首页 > 代码库 > 归并排序(merge sort)

归并排序(merge sort)

M erge sort is based on the divide-and-conquer paradigm. Its worst-case running time has a lower order of growth
than insertion sort. Since we are dealing with subproblems, we state each subproblem as sorting a subarray A[p .. r].
Initially, p = 1 and r = n, but these values change as we recurse through subproblems.

To sort A[p .. r]:
1. Divide Step
If a given array A has zero or one element, simply return; it is already sorted. Otherwise, split A[p .. r]
into two subarrays A[p .. q] and A[q + 1 .. r], each containing about half of the elements of A[p .. r].
That is, q is the halfway point of A[p .. r].
2. Conquer Step
Conquer by recursively sorting the two subarrays A[p .. q] and A[q + 1 .. r].
3. Combine Step
Combine the elements back in A[p .. r] by merging the two sorted subarrays A[p .. q] and A[q + 1 .. r] into
a sorted sequence. To accomplish this step, we will define a procedure MERGE (A, p, q, r).
Note that the recursion bottoms out when the subarray has just one element, so that it is trivially sorted.

 

归并操作

归并操作(merge),也叫归并算法,指的是将两个顺序序列合并成一个顺序序列的方法。
如 设有数列{6,202,100,301,38,8,1}
初始状态:6,202,100,301,38,8,1
第一次归并后:{6,202},{100,301},{8,38},{1},比较次数:3;
第二次归并后:{6,100,202,301},{1,8,38},比较次数:4;
第三次归并后:{1,6,8,38,100,202,301},比较次数:4;
总的比较次数为:3+4+4=11,;
逆序数为14;
 
技术分享
  1 /* C program for Merge Sort */  2 #include<stdlib.h>  3 #include<stdio.h>  4   5 // Merges two subarrays of arr[].  6 // First subarray is arr[l..m]  7 // Second subarray is arr[m+1..r]  8 void merge(int arr[], int l, int m, int r)  9 { 10     int i, j, k; 11     int n1 = m - l + 1; 12     int n2 = r - m; 13  14     /* create temp arrays */ 15     int L[n1], R[n2]; 16  17     /* Copy data to temp arrays L[] and R[] */ 18     for (i = 0; i < n1; i++) 19         L[i] = arr[l + i]; 20     for (j = 0; j < n2; j++) 21         R[j] = arr[m + 1+ j]; 22  23     /* Merge the temp arrays back into arr[l..r]*/ 24     i = 0; // Initial index of first subarray 25     j = 0; // Initial index of second subarray 26     k = l; // Initial index of merged subarray 27     while (i < n1 && j < n2) 28     { 29         if (L[i] <= R[j]) 30         { 31             arr[k] = L[i]; 32             i++; 33         } 34         else 35         { 36             arr[k] = R[j]; 37             j++; 38         } 39         k++; 40     } 41  42     /* Copy the remaining elements of L[], if there 43     are any */ 44     while (i < n1) 45     { 46         arr[k] = L[i]; 47         i++; 48         k++; 49     } 50  51     /* Copy the remaining elements of R[], if there 52     are any */ 53     while (j < n2) 54     { 55         arr[k] = R[j]; 56         j++; 57         k++; 58     } 59 } 60  61 /* l is for left index and r is right index of the 62 sub-array of arr to be sorted */ 63 void mergeSort(int arr[], int l, int r) 64 { 65     if (l < r) 66     { 67         // Same as (l+r)/2, but avoids overflow for 68         // large l and h 69         int m = l+(r-l)/2; 70  71         // Sort first and second halves 72         mergeSort(arr, l, m); 73         mergeSort(arr, m+1, r); 74  75         merge(arr, l, m, r); 76     } 77 } 78  79 /* UTILITY FUNCTIONS */ 80 /* Function to print an array */ 81 void printArray(int A[], int size) 82 { 83     int i; 84     for (i=0; i < size; i++) 85         printf("%d ", A[i]); 86     printf("\n"); 87 } 88  89 /* Driver program to test above functions */ 90 int main() 91 { 92     int arr[] = {12, 11, 13, 5, 6, 7}; 93     int arr_size = sizeof(arr)/sizeof(arr[0]); 94  95     printf("Given array is \n"); 96     printArray(arr, arr_size); 97  98     mergeSort(arr, 0, arr_size - 1); 99 100     printf("\nSorted array is \n");101     printArray(arr, arr_size);102     return 0;103 }
View Code

 

归并排序(merge sort)