首页 > 代码库 > DL学习笔记-CNN 相关知识

DL学习笔记-CNN 相关知识

1968年,hubel对猫的视觉皮层细胞研究, 提出receptive filed概念,视觉细胞可以分为简单细胞和复杂细胞,分别对感受野的范围不同,在生物学基础上,研究出针对二维图像的卷积神经网络。

传统图像分类:特征提取+特征表达+分类CNN将这些方法集合在一起、

一、卷积神经网络特征

1.局部接受域

感受野宽度,视网膜,m层。m+1层,感受野范围外是没有响应的,

2.权值共享

权值相同的进行共享,进行平移。

二、卷积神经网络结构

典型结构

技术分享

1.卷积层(Convolution)

图像是一个二维的离散信号,对于图像来说,卷积是一个滤波过程,,卷积函数中的卷积权重不同,对与图像处理的效果也不同,,采用水平梯度卷积核的结果在水平方向上响应最大,。

隐含层由多个特征图构成,隐含层的权重可以表示为目标特征图,元特征图,目标像素水平位置,与目标像素竖直位置的4D张量,

卷积核有BP算法得得,每一个网络层中有多个卷积核。通过卷积操作,神经网络提取不同的输入特征,底层卷积核得到图像中边、线、角、特征,而高层卷积核得到更加复杂的特征。

卷积结束后,还不能分类,卷积的数量巨大,例如128X128像素的图像,卷积核大小是8X8。那么有(128-8+1)^2个卷积核,所以下一层是pool层。

pool层主要累积不同位置的特征统计,例如可以计算图像中某个区域的特征值或者最大值,这样的统计维度远远低于原始特征图像。

2.激活层

激活函数是非线性函数,,非线性激活函数是亿万细胞存在得到可能。

3.分类层

CNN分类中,常见的分类函数就是多项多项逻辑斯蒂回归模型,Softmax回归模型。它是基于概率的分类模型,利用最小化负对数似然函数来优化。

DL学习笔记-CNN 相关知识