首页 > 代码库 > r-cnn学习(四):源码学习

r-cnn学习(四):源码学习

论文看的云里雾里,希望通过阅读其代码来进一步了解。

参考:http://blog.csdn.net/sloanqin/article/details/51525692

 首先是./tools/train_faster_rcnn_alt_opt.py,通过其main函数了解整个训练流程。

if __name__ == __main__: #建议读者调试这个函数,进去看看每个变量是怎么回事  
    args = parse_args() #解析系统传入的argv参数,解析完放到args中返回  
  
    print(Called with args:)  
    print(args)  
  
    if args.cfg_file is not None:  
        cfg_from_file(args.cfg_file) #如果输入了这个参数,就调用该函数,应该是做某些配置操作  
    if args.set_cfgs is not None:  
        cfg_from_list(args.set_cfgs)  
    cfg.GPU_ID = args.gpu_id # cfg是一个词典(edict)数据结构,从faster-rcnn.config引入的  
  
    # --------------------------------------------------------------------------  
    # Pycaffe doesn‘t reliably free GPU memory when instantiated nets are  
    # discarded (e.g. "del net" in Python code). To work around this issue, each  
    # training stage is executed in a separate process using  
    # multiprocessing.Process. #这里说的要使用多进程,因为在pycaffe中当某个网络被discard后,不能可靠保证释放内存资源;进程关闭后资源自然会释放  
    # --------------------------------------------------------------------------  
  
    # queue for communicated results between processes  
    mp_queue = mp.Queue() #mp指的是multiprocessing库,所以这里返回了一个用于多进程通信的队列对象  
    # solves, iters, etc. for each training stage  
    solvers, max_iters, rpn_test_prototxt = get_solvers(args.net_name) #这里返回了solvers的路径,maxiters的值,rpn_test_prototxt的路径  
  
    print ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
    print Stage 1 RPN, init from ImageNet model  
    print ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
    # 这一步是用imageNet的模型初始化,然后训练rpn网络(整个训练过程可以参考作者的论文)  
    cfg.TRAIN.SNAPSHOT_INFIX = stage1  
    mp_kwargs = dict(  
            queue=mp_queue,  
            imdb_name=args.imdb_name,  
            init_model=args.pretrained_model,  
            solver=solvers[0],  
            max_iters=max_iters[0],  
            cfg=cfg) # 这里把该阶段需要的参数都放到这里来了,即函数train_rpn的输入参数  
    p = mp.Process(target=train_rpn, kwargs=mp_kwargs) # 显然,这里准备启动一个新进程,调用函数train_rpn,传入参数kwargs,所以我们进入train_rpn函数看看是如何工作的  
    p.start()  
    rpn_stage1_out = mp_queue.get()  
    p.join()  
  
    print ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
    print Stage 1 RPN, generate proposals  
    print ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
    # 这一步是利用上一步训练好的rpn网络,产生proposals供后面使用  
    mp_kwargs = dict(  
            queue=mp_queue,  
            imdb_name=args.imdb_name,  
            rpn_model_path=str(rpn_stage1_out[model_path]),  
            cfg=cfg,  
            rpn_test_prototxt=rpn_test_prototxt)  
    p = mp.Process(target=rpn_generate, kwargs=mp_kwargs)  
    p.start()  
    rpn_stage1_out[proposal_path] = mp_queue.get()[proposal_path]  
    p.join()  
  
    print ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
    print Stage 1 Fast R-CNN using RPN proposals, init from ImageNet model  
    print ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
    #这一步是再次用imageNet的模型初始化前5层卷积层,然后用上一步得到的proposals训练检测网络  
    cfg.TRAIN.SNAPSHOT_INFIX = stage1  
    mp_kwargs = dict(  
            queue=mp_queue,  
            imdb_name=args.imdb_name,  
            init_model=args.pretrained_model,  
            solver=solvers[1],  
            max_iters=max_iters[1],  
            cfg=cfg,  
            rpn_file=rpn_stage1_out[proposal_path])  
    p = mp.Process(target=train_fast_rcnn, kwargs=mp_kwargs)  
    p.start()  
    fast_rcnn_stage1_out = mp_queue.get()  
    p.join()  
  
    print ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
    print Stage 2 RPN, init from stage 1 Fast R-CNN model  
    print ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
    #这一步固定上一步训练好的前五层卷积层,再次训练RPN,这样就得到最终RPN网络的参数了  
    cfg.TRAIN.SNAPSHOT_INFIX = stage2  
    mp_kwargs = dict(  
            queue=mp_queue,  
            imdb_name=args.imdb_name,  
            init_model=str(fast_rcnn_stage1_out[model_path]),  
            solver=solvers[2],  
            max_iters=max_iters[2],  
            cfg=cfg)  
    p = mp.Process(target=train_rpn, kwargs=mp_kwargs)  
    p.start()  
    rpn_stage2_out = mp_queue.get()  
    p.join()  
  
    print ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
    print Stage 2 RPN, generate proposals  
    print ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
    #利用最终确定的RPN网络产生proposals  
    mp_kwargs = dict(  
            queue=mp_queue,  
            imdb_name=args.imdb_name,  
            rpn_model_path=str(rpn_stage2_out[model_path]),  
            cfg=cfg,  
            rpn_test_prototxt=rpn_test_prototxt)  
    p = mp.Process(target=rpn_generate, kwargs=mp_kwargs)  
    p.start()  
    rpn_stage2_out[proposal_path] = mp_queue.get()[proposal_path]  
    p.join()  
  
    print ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
    print Stage 2 Fast R-CNN, init from stage 2 RPN R-CNN model  
    print ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
    #利用上一步产生的proposals,训练出最终的检测网络  
    cfg.TRAIN.SNAPSHOT_INFIX = stage2  
    mp_kwargs = dict(  
            queue=mp_queue,  
            imdb_name=args.imdb_name,  
            init_model=str(rpn_stage2_out[model_path]),  
            solver=solvers[3],  
            max_iters=max_iters[3],  
            cfg=cfg,  
            rpn_file=rpn_stage2_out[proposal_path])  
    p = mp.Process(target=train_fast_rcnn, kwargs=mp_kwargs)  
    p.start()  
    fast_rcnn_stage2_out = mp_queue.get()  
    p.join()  
  
    # Create final model (just a copy of the last stage)  
    final_path = os.path.join(  
            os.path.dirname(fast_rcnn_stage2_out[model_path]),  
            args.net_name + _faster_rcnn_final.caffemodel)  
    print cp {} -> {}.format(  
            fast_rcnn_stage2_out[model_path], final_path)  
    shutil.copy(fast_rcnn_stage2_out[model_path], final_path)  
    print Final model: {}.format(final_path)  

通过上面的代码可以看出,整个迭代过程分为四步(参考论文)。其中后面两步固定共享卷积

层,只对RPN和fc层进行微调。

技术分享

 

接着看看每一步是怎样的。

首先是train_rpn。从代码看出,这个函数的主要任务是,配置参数,准备数据集,

传入第一阶段的solver,调用train_net训练模型并将结果返回。

def train_rpn(queue=None, imdb_name=None, init_model=None, solver=None,  
              max_iters=None, cfg=None):  
    """Train a Region Proposal Network in a separate training process. 
    """  
    #首先进来后继续配置了一些cfg这个对象的一些参数  
    # Not using any proposals, just ground-truth boxes  
    cfg.TRAIN.HAS_RPN = True  
    cfg.TRAIN.BBOX_REG = False  # applies only to Fast R-CNN bbox regression  
    cfg.TRAIN.PROPOSAL_METHOD = gt  
    cfg.TRAIN.IMS_PER_BATCH = 1  
    print Init model: {}.format(init_model) #格式化输出字符串  
    print(Using config:)  
    pprint.pprint(cfg)  
  
    import caffe  
    _init_caffe(cfg)  
  
    #这里是关键,准备数据集,我们在debug的时候可以发现,imdb是一个类,而roidb是该类的一个成员  
    roidb, imdb = get_roidb(imdb_name)#我们进入这个数据准备的函数看看  
    print roidb len: {}.format(len(roidb))  
    output_dir = get_output_dir(imdb)  
    print Output will be saved to `{:s}`.format(output_dir)  
    #这个solver传入的是./models/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_rpn_solver60k80k.pt  
    model_paths = train_net(solver, roidb, output_dir,  
                            pretrained_model=init_model,  
                            max_iters=max_iters) #进入train_net函数,看训练如何实现的  
    # Cleanup all but the final model  
    for i in model_paths[:-1]: #把训练过程中保存的中间结果的模型删掉,只返回最终模型的结果  
        os.remove(i)  
    rpn_model_path = model_paths[-1]  
    # Send final model path through the multiprocessing queue  
    queue.put({model_path: rpn_model_path}) #通过队列将该进程运行的模型结果的路径返回  

 

顺着train_rpn,查看train_net函数,该函数位于:./lib/fast_rcnn/train.py文件中

调用该文件中定义的类SolverWrapper的构造函数,返回该类的一个对象sw,然后调用了sw的train_model方法进行训练,

传入参数,搭建caffe的网络结构,用预训练模型完成初始化,整个过程在构造函数中完成。

 

"""Train a Fast R-CNN network."""  
  
import caffe  
from fast_rcnn.config import cfg  
import roi_data_layer.roidb as rdl_roidb  
from utils.timer import Timer  
import numpy as np  
import os  
  
from caffe.proto import caffe_pb2  
import google.protobuf as pb2  
  
class SolverWrapper(object):  
    """A simple wrapper around Caffe‘s solver. 
    This wrapper gives us control over he snapshotting process, which we 
    use to unnormalize the learned bounding-box regression weights. 
    """  
  
    #这就是SolverWrapper的构造函数  
    def __init__(self, solver_prototxt, roidb, output_dir,  
                 pretrained_model=None):  
        """Initialize the SolverWrapper."""  
        self.output_dir = output_dir  
  
        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and  
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):  
            # RPN can only use precomputed normalization because there are no  
            # fixed statistics to compute a priori  
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED  
  
        if cfg.TRAIN.BBOX_REG:  
            print Computing bounding-box regression targets...  
            self.bbox_means, self.bbox_stds = \  
                    rdl_roidb.add_bbox_regression_targets(roidb)  
            print done  
  
        # 这句话调用了caffe的SGDSolver,这个是caffe在C++中实现的一个类,用来进行随机梯度下降优化,该类根据solver_prototxt中定义的网络和求解参数,完成网络  
               # 初始化,然后返回类SGDSolver的一个实例,关于该类的设计可以参考caffe的网站:http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SGDSolver.html  
        # 然后作者把该对象作为SolverWrapper的一个成员,命名为solver  
        self.solver = caffe.SGDSolver(solver_prototxt)  
        if pretrained_model is not None:  
            print (Loading pretrained model   
                   weights from {:s}).format(pretrained_model)  
            self.solver.net.copy_from(pretrained_model)#这句话完成对网络的初始化  
  
        self.solver_param = caffe_pb2.SolverParameter()  
        with open(solver_prototxt, rt) as f:  
            pb2.text_format.Merge(f.read(), self.solver_param)#这句话应该是设置了self.solver_param这个成员的参数  
  
        self.solver.net.layers[0].set_roidb(roidb)#这句话传入训练的数据:roidb  
  
    def snapshot(self):  
        """Take a snapshot of the network after unnormalizing the learned 
        bounding-box regression weights. This enables easy use at test-time. 
        """  
        net = self.solver.net  
  
        scale_bbox_params = (cfg.TRAIN.BBOX_REG and  
                             cfg.TRAIN.BBOX_NORMALIZE_TARGETS and  
                             net.params.has_key(bbox_pred))  
  
        if scale_bbox_params:  
            # save original values  
            orig_0 = net.params[bbox_pred][0].data.copy()  
            orig_1 = net.params[bbox_pred][1].data.copy()  
  
            # scale and shift with bbox reg unnormalization; then save snapshot  
            net.params[bbox_pred][0].data[...] = \  
                    (net.params[bbox_pred][0].data *  
                     self.bbox_stds[:, np.newaxis])  
            net.params[bbox_pred][1].data[...] = \  
                    (net.params[bbox_pred][1].data *  
                     self.bbox_stds + self.bbox_means)  
  
        infix = (_ + cfg.TRAIN.SNAPSHOT_INFIX  
                 if cfg.TRAIN.SNAPSHOT_INFIX != ‘‘ else ‘‘)  
        filename = (self.solver_param.snapshot_prefix + infix +  
                    _iter_{:d}.format(self.solver.iter) + .caffemodel)  
        filename = os.path.join(self.output_dir, filename)  
  
        net.save(str(filename))  
        print Wrote snapshot to: {:s}.format(filename)  
  
        if scale_bbox_params:  
            # restore net to original state  
            net.params[bbox_pred][0].data[...] = orig_0  
            net.params[bbox_pred][1].data[...] = orig_1  
        return filename  
  
    def train_model(self, max_iters):  
        """Network training loop."""  
        last_snapshot_iter = -1  
        timer = Timer()  
        model_paths = []  
        while self.solver.iter < max_iters:  
            # Make one SGD update  
            timer.tic()#作者测量一次迭代花的时间  
            self.solver.step(1)# 做一次梯度下降优化  
            timer.toc()  
            if self.solver.iter % (10 * self.solver_param.display) == 0:  
                print speed: {:.3f}s / iter.format(timer.average_time)  
  
            if self.solver.iter % cfg.TRAIN.SNAPSHOT_ITERS == 0:  
                last_snapshot_iter = self.solver.iter  
                model_paths.append(self.snapshot())  
  
        if last_snapshot_iter != self.solver.iter:  
            model_paths.append(self.snapshot())  
        return model_paths  
  
def get_training_roidb(imdb):  
    """Returns a roidb (Region of Interest database) for use in training."""  
    if cfg.TRAIN.USE_FLIPPED:  
        print Appending horizontally-flipped training examples...  
        imdb.append_flipped_images()  
        print done  
  
    print Preparing training data...  
    rdl_roidb.prepare_roidb(imdb)  
    print done  
  
    return imdb.roidb  
  
def filter_roidb(roidb):  
    """Remove roidb entries that have no usable RoIs."""  
  
    def is_valid(entry):  
        # Valid images have:  
        #   (1) At least one foreground RoI OR  
        #   (2) At least one background RoI  
        overlaps = entry[max_overlaps]  
        # find boxes with sufficient overlap  
        fg_inds = np.where(overlaps >= cfg.TRAIN.FG_THRESH)[0]  
        # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI)  
        bg_inds = np.where((overlaps < cfg.TRAIN.BG_THRESH_HI) &  
                           (overlaps >= cfg.TRAIN.BG_THRESH_LO))[0]  
        # image is only valid if such boxes exist  
        valid = len(fg_inds) > 0 or len(bg_inds) > 0  
        return valid  
  
    num = len(roidb)  
    filtered_roidb = [entry for entry in roidb if is_valid(entry)]  
    num_after = len(filtered_roidb)  
    print Filtered {} roidb entries: {} -> {}.format(num - num_after,  
                                                       num, num_after)  
    return filtered_roidb  
  
# 该函数先是调用了该文件中定义的类SolverWrapper的构造函数,返回了该类的一个对象sw,然后调用了sw的train_model方法进行训练  
# 传入参数,搭建caffe的网络结构,用预训练模型完成初始化,这些过程就是在该构造函数中实现的,进入这个构造函数看看  
def train_net(solver_prototxt, roidb, output_dir,  
              pretrained_model=None, max_iters=40000):  
    """Train a Fast R-CNN network."""  
  
    roidb = filter_roidb(roidb)#删除一些不满足要求的输入图片  
    sw = SolverWrapper(solver_prototxt, roidb, output_dir,  
                       pretrained_model=pretrained_model)#调用构造函数  
  
    print Solving...  
    model_paths = sw.train_model(max_iters)#开始训练模型  
    print done solving  
    return model_paths  

 

r-cnn学习(四):源码学习