首页 > 代码库 > leetcode -day 15 Distinct Subsequences
leetcode -day 15 Distinct Subsequences
Distinct Subsequences
Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE"
is a subsequence of "ABCDE"
while "AEC"
is not).
Here is an example:
S = "rabbbit"
, T = "rabbit"
Return 3
.
分析:此题乍一看看不明白啥意思,后面慢慢理解,就是说T是S的子串,这里的子串是说原字符串删除某些字符后剩余字符的组合,题目是S中通过删除操作获得子串T的数目。如例子中的第一个为删掉第一个b,第二个为删除第二个b,第三个为删除第三个b,因此数量为3.
首先想到的方法是回溯法,但是遇到长串时超时。里面包含太多重复子问题。
代码如下:Time Limit Exceeded
class Solution { public: int numDistinct(string S, string T) { num = 0; if(S.length() < T.length()){ return num; } numDistinctCore(S,T,0,0); return num; } void numDistinctCore(string& S,string& T, int si, int tj){ int slen = S.length(); int tlen = T.length(); if(slen-si < tlen -tj){ return; } if(tj == tlen){ ++num; } for(int i = si; i<slen; ++i){ if(S[i] == T[tj]){ numDistinctCore(S,T,i+1, tj+1); } } } int num; };
考虑到回溯法子问题重复求解,想到利用动态规划的方法,此题有些像求最大公共字串,但是需要修改一下,寻找子问题。设dp[i][j]为S字符串截止到i时,能将S前面字符串能转换为T截止到j的子串的转换次数。求dp[i][j]时,一种方法转换时即删除S[i],变回S[i-1][j]的问题;另一种方法,如果S[i] == T[j],则转换为dp[i-1][j-1]的问题。即为相同时为 dp[i][j] = dp[i-1][j] + dp[i-1][j-1] ,不同时为 dp[i][j] = dp[i-1][j]
Accepted
class Solution { public: int numDistinct(string S, string T) { int slen = S.length(); int tlen = T.length(); if(slen < tlen){ return 0; } int **dp = new int*[slen+1]; for(int i=0; i<slen+1; ++i){ dp[i] = new int[tlen+1]; dp[i][0] = 1; } for(int j=1; j<tlen+1; ++j){ dp[0][j] = 0; } for(int i=1; i<slen+1; ++i){ for(int j=1; j<tlen+1; ++j){ int temp = dp[i-1][j]; if(S[i-1] == T[j-1]){ temp += dp[i-1][j-1]; } dp[i][j] = temp; } } int result = dp[slen][tlen]; for(int i=0; i<slen+1; ++i){ delete[] dp[i]; } delete[] dp; return result; } };