首页 > 代码库 > LightOJ 1070 - Algebraic Problem 推导+矩阵快速幂
LightOJ 1070 - Algebraic Problem 推导+矩阵快速幂
http://www.lightoj.com/volume_showproblem.php?problem=1070
思路:\({(a+b)}^n =(a+b){(a+b)}^{n-1} \) \((ab)C_{n}^{r}a^{n-r}b{r} = C_{n+2}^{r}a^{n-r+2}b{r} - a^{n+2} - b^{n+2} \)
综上\( f(n) = (a+b)f(n-1)-(ab)f(n-2) \)
/** @Date : 2016-12-19-19.53 * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : */#include<bits/stdc++.h>#define LL long long#define PII pair#define MP(x, y) make_pair((x),(y))#define fi first#define se second#define PB(x) push_back((x))#define MMG(x) memset((x), -1,sizeof(x))#define MMF(x) memset((x),0,sizeof(x))#define MMI(x) memset((x), INF, sizeof(x))using namespace std;const int INF = 0x3f3f3f3f;const int N = 1e5+20;const double eps = 1e-8;typedef unsigned long long ull;struct matrix{ ull mt[2][2]; void init() { for(int i = 0; i < 2; i++) for(int j = 0; j < 2; j++) mt[i][j] = 0; } void cig() { for(int i = 0; i < 2; i++) mt[i][i] = 1; }};matrix mul(matrix a, matrix b){ matrix c; c.init(); for(int i = 0; i < 2; i++) for(int j = 0; j < 2; j++) for(int k = 0; k < 2; k++) { c.mt[i][j] += a.mt[i][k] * b.mt[k][j]; } return c;}matrix fpow(matrix a, LL n){ matrix r; r.init(); r.cig(); while(n > 0) { if(n & 1) r = mul(r, a); a = mul(a, a); n >>= 1; } return r;}ull fun(LL p, LL q, LL n){ if(n < 1) { return 2; } matrix base; base.mt[0][0] = p; base.mt[0][1] = -q; base.mt[1][0] = 1; base.mt[1][1] = 0; base = fpow(base, n - 1); ull ans = base.mt[0][0] * p + base.mt[0][1] * 2; return ans;}int main(){ int T; int cnt = 0; cin >> T; while(T--) { LL n, p , q; scanf("%lld%lld%lld", &p, &q, &n); ull ans = fun(p, q, n); printf("Case %d: %llu\n", ++cnt, ans); } return 0;}//f(n) = (a+b)*f(n-1) - (ab)*f(n-2)
LightOJ 1070 - Algebraic Problem 推导+矩阵快速幂
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。