首页 > 代码库 > HDU 4966 GGS-DDU(最小树形图)

HDU 4966 GGS-DDU(最小树形图)

n个技能,每个技能有0~a[i]的等级,m个课程,每个课程需要前置技能c[i]至少达到lv1[i]等级,效果是技能d[i]达到lv2[i]等级,花费w[i]。

输出最小花费使得全技能满级(初始全技能0等级)

 

n<=50,Σa[i]<=500,m<=2000

点<=551,边<=2000+50+Σ((a[i]+1)*a[i]/2)

Σw[i]<=2000*1000<0x3f3f3f3f

比赛时候完全不在状态,什么题都想不到,坑队友了。。。

 

最小树形图~做过tarjan缩点的问题应该不大~以前做过不过好像没留下代码现在留下~

攻略步骤:

引用http://www.cnblogs.com/vongang/archive/2012/07/18/2596851.html

引用http://blog.csdn.net/wsniyufang/article/details/6747392

1、找到除了root以为其他点的权值最小的入边。用In[i]记录

2、如果出现除了root以为存在其他孤立的点,则不存在最小树形图。

3、找到图中所有的环,并对环进行缩点,重新编号。
4、更新其他点到环上的点的距离,如:

环中的点有(Vk1,Vk2,… ,Vki)总共i个,用缩成的点叫Vk替代,则在压缩后的图中,其他所有不在环中点v到Vk的距离定义如下:
gh[v][Vk]=min { gh[v][Vkj]-mincost[Vkj] } (1<=j<=i)

而Vk到v的距离为
gh[Vk][v]=min { gh[Vkj][v] }              (1<=j<=i)

 5、重复3,4知道没有环为止。

#include <cstdio>#include <cstring>#include <iostream>#include <algorithm>#include <vector>using namespace std;#define inf 0x3f3f3f3f#define maxn 566#define maxm (566*566+2000)struct Edge{	int u,v,w;}e[maxm];int in[maxn], pre[maxn];int vis[maxn];int belong[maxn];int solve(int root,int n,int esz){// 1-based	int ret=0;	while(1){		for(int i=1;i<=n;++i) in[i]=inf;		for(int i=1;i<=esz;++i){// 找最小边			int u=e[i].u, v=e[i].v, w=e[i].w;			if(v==u){				swap(e[i--],e[esz--]);				continue;			}			if(w<in[v])				in[v]=w, pre[v]=u;		}		for(int i=1;i<=n;++i) if(in[i]==inf && i!=root) return inf;// 无解		int cnt=0;		memset(belong,-1,sizeof(belong));		memset(vis,-1,sizeof(vis));		in[root]=0;		for(int i=1;i<=n;++i){// 找环			ret+=in[i];			int v = i;			while(vis[v]!=i && belong[v]==-1 && v!=root)				vis[v] = i, v = pre[v];			if(vis[v]==i){// 有环,重新编号				belong[v]=++cnt;				for(int u=pre[v];u!=v;u=pre[u])					belong[u]=cnt;			}		}		if(cnt==0) break;// 已成型		for(int i=1;i<=n;++i) if(belong[i]==-1) belong[i]=++cnt;// 不在环内,重新编号		for(int i=1;i<=esz;++i){// 更新环外点和环缩点后的点的距离			int v=e[i].v;			e[i].u=belong[e[i].u];			e[i].v=belong[e[i].v];			if(e[i].u!=e[i].v) e[i].w-=in[v];		}		n=cnt;		root=belong[root];	}	return ret;}int main(){	int n,m;	int a[55],s[55];	while(~scanf("%d%d",&n,&m) && n+m){		s[0]=1;		for(int i=1;i<=n;++i) scanf("%d",a+i), s[i]=s[i-1]+a[i]+1;		int esz=0;		for(int i=0;i<m;++i){			int c,l1,d,l2,w;			scanf("%d%d%d%d%d",&c,&l1,&d,&l2,&w);			int u=s[c-1]+l1+1, v=s[d-1]+l2+1;			++esz;			e[esz].u=u,e[esz].v=v,e[esz].w=w;		}		for(int i=1;i<=n;++i){			++esz;			e[esz].u=1,e[esz].v=s[i-1]+1,e[esz].w=0;			for(int j=0;j<=a[i];++j){				for(int k=0;k<j;++k){					int u=s[i-1]+j+1,v=s[i-1]+k+1;					++esz;					e[esz].u=u,e[esz].v=v,e[esz].w=0;				}			}		}		int ans=solve(1,s[n],esz);		if(ans==inf) puts("-1");		else printf("%d\n",ans);	}	return 0;}