首页 > 代码库 > 《STL源码剖析》---stl_tree.h阅读笔记
《STL源码剖析》---stl_tree.h阅读笔记
STL中,关联式容器的内部结构是一颗平衡二叉树,以便获得良好的搜索效率。红黑树是平衡二叉树的一种,它不像AVL树那样要求绝对平衡,降低了对旋转的要求,但是其性能并没有下降很多,它的搜索、插入、删除都能以O(nlogn)时间完成。平衡可以在一次或者两次旋转解决,是“性价比”很高的平衡二叉树。
RB-tree(red black tree)红黑树是平衡二叉树。它满足一下规则
(1)每个节点不是红色就是黑色。(2)根节点是黑色。
(3)如果节点为红色,则其子节点比为黑色。
(4)任何一个节点到NULL(树尾端)的路径上,所含的黑色节点数必须相同。
根据上面的规则(4),新添加的节点必须为红色,否则到NULL路径上黑色节点会增加。
根据上面的规则(3),新添加节点的父节点必须为黑色,因为新添加节点必须为红色。
当新的节点根据二叉树的搜索规则到达插入点时,未能满足上面两条,就必须调整颜色并旋转树形。
为了方便讨论插入新节点,定义几个代名词:
假设新节点为X,其父节点为P,其祖父节点为G,伯父节点(父节点之兄弟节点)为S,曾祖父节点为GG。现在根据红黑树规则4,X必须为红色;若P为红色(违反了规则3,需调整),G必须为黑色。于是,根据X的插入位置和外围节点(S和GG)的颜色,分以下四种情况:
(1)S为黑色且X为外侧插入。对此种情况,我们先对P,G做一次单旋转,再更改P,G颜色,即可重新满足红黑树规则3。如下图
(2)S为黑色且X为内侧插入。对此情况,先对P,X做一次单旋转并更改G,X颜色,再将结果对G做一次单旋转,即可满足红黑树性质3。如下图5
(3)S为红色且X为外侧插入。先对P和G做一次单旋转,并改变X的颜色。此时如果GG为黑色,则搞定。如下图。否则见情况(4)
(4)S为红色且X为外侧插入。先对P和G做一次单旋转,并改变X的颜色。此时如果GG为黑色,还要持续网上做,直到不再有父子连续为红的情况。如下图
G++ 2.91.57,cygnus\cygwin-b20\include\g++\stl_tree.h 完整列表 /* * * Copyright (c) 1996,1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * */ /* NOTE: This is an internal header file, included by other STL headers. * You should not attempt to use it directly. */ #ifndef __SGI_STL_INTERNAL_TREE_H #define __SGI_STL_INTERNAL_TREE_H /* 这章讲解Red-black tree(红黑树)class,用来当做SLT关系容器(如set,multiset,map, multimap)。里面所用的insertion和deletion方法以Cormen, Leiserson 和 Riveset所著的 《Introduction to Algorithms》一书为基础,但是有以下两点不同: (1)header不仅指向root,也指向红黑树的最左节点,以便用常数时间实现begin(),并且也指向红黑树的最右边节点,以便 set相关泛型算法(如set_union等等)可以有线性时间实现。 (2)当一个即将被删除的节点有两个孩子节点时,它的successor(后继)node is relinked into its place, ranther than copied, 如此一来唯一失效的(invalidated)的迭代器就只是那些referring to the deleted node. */ #include <stl_algobase.h> #include <stl_alloc.h> #include <stl_construct.h> #include <stl_function.h> __STL_BEGIN_NAMESPACE //定义红色黑色。红色为0,黑色为1 typedef bool __rb_tree_color_type; const __rb_tree_color_type __rb_tree_red = false; const __rb_tree_color_type __rb_tree_black = true; //红黑树Base类 struct __rb_tree_node_base { typedef __rb_tree_color_type color_type; typedef __rb_tree_node_base* base_ptr; color_type color; // 节点颜色,红或者黑 base_ptr parent; // RB树的许多操作,必须知道其父结点 base_ptr left; // 指向左孩子节点。 base_ptr right; // 指向右孩子节点。 static base_ptr minimum(base_ptr x) { while (x->left != 0) x = x->left; // 一直向左走,就会找到最小值 return x; // 这是二叉查找树的性质。同理下面的函数 } static base_ptr maximum(base_ptr x) { while (x->right != 0) x = x->right; return x; } }; //红黑树类,继承Base类 template <class Value> struct __rb_tree_node : public __rb_tree_node_base { typedef __rb_tree_node<Value>* link_type;//指向节点的指针 Value value_field; // 节点的值 }; //迭代器基类,类型为bidirectional_iterator_tag,可以双向移动 struct __rb_tree_base_iterator { typedef __rb_tree_node_base::base_ptr base_ptr;//指向红黑树节点指针 typedef bidirectional_iterator_tag iterator_category; typedef ptrdiff_t difference_type; //指向红黑树节点的指针,用它来和容器产生关系 base_ptr node; // 以下其實可實作於 operator++ 內,因為再無他處會呼叫此函式了。 /* 重载运算符++和--。目的是找到前驱和后继节点。 关于前驱和后继节点的定义,类似二叉查找树。可以在这里找到: http://blog.csdn.net/kangroger/article/details/8774121 */ //下面只是为了实现oprerator++的,其他地方不会调用了。 //++是找到其后继节点 void increment() { //如果有右孩子,就是找右子树的最小值 if (node->right != 0) { // 如果有右孩子 node = node->right; // 就向右走 while (node->left != 0) // 然后向左走到底 node = node->left; } //如果无右子树。那么就找其最低祖先节点,且这个最低祖先节点的左孩子节点 //也是其祖先节点(每个节点就是自己的祖先节点) else { // 没有右孩子 base_ptr y = node->parent; // 找出父节点 while (node == y->right) { // 如果现行节点本身是个右子节点 node = y; // 就一直上溯,直到「不为右子节点」止。 y = y->parent; } /* 若此时的右子节点不等于此时的父节点,此时的父节点即为解答,否则此时的node为解答. 这样做是为了应付一种特殊情况:我们欲寻找根节点的下一个节点。而恰巧根节点无右孩子。 当然,以上特殊做法必须配合RB-tree根节点与特殊header之间的特殊关系 */ if (node->right != y) // 若此时的右子节点不等于此时的父节点 node = y; // 此时的父节点即为解答 // 否则此时的node为解答 } } // 以下其實可實作於 operator-- 內,因為再無他處會呼叫此函式了。 /* 查找前驱结点。 */ void decrement() { if (node->color == __rb_tree_red && // 如果是红节点,且 node->parent->parent == node) // 父节点的父节点等于自己 node = node->right; // 狀況(1) 右子节点即为解答。 /* 以上情况发生于node为header时(亦即node为end()时)。注意,header之右孩子即 mostright,指向整棵树的max节点。 */ //左子树的最大值结点 else if (node->left != 0) { base_ptr y = node->left; while (y->right != 0) y = y->right; node = y; } /* 既非根节点,且无左子树。找其最低祖先节点y,且y的右孩子也是其祖先节点 */ else { base_ptr y = node->parent; //找出父节点 while (node == y->left) { node = y; y = y->parent; } node = y; } } }; //此处为迭代器 template <class Value, class Ref, class Ptr> struct __rb_tree_iterator : public __rb_tree_base_iterator { typedef Value value_type; typedef Ref reference; typedef Ptr pointer; typedef __rb_tree_iterator<Value, Value&, Value*> iterator; typedef __rb_tree_iterator<Value, const Value&, const Value*> const_iterator; typedef __rb_tree_iterator<Value, Ref, Ptr> self; typedef __rb_tree_node<Value>* link_type; //几个构造函数 __rb_tree_iterator() {} __rb_tree_iterator(link_type x) { node = x; } __rb_tree_iterator(const iterator& it) { node = it.node; } //重载操作符 reference operator*() const { return link_type(node)->value_field; } #ifndef __SGI_STL_NO_ARROW_OPERATOR pointer operator->() const { return &(operator*()); } #endif /* __SGI_STL_NO_ARROW_OPERATOR */ //++做了封装,调用的是increment() self& operator++() { increment(); return *this; } self operator++(int) { self tmp = *this; increment(); return tmp; } //调用的是decrement self& operator--() { decrement(); return *this; } self operator--(int) { self tmp = *this; decrement(); return tmp; } }; //两个迭代器相等,意味着它们指向同一个红黑树节点 inline bool operator==(const __rb_tree_base_iterator& x, const __rb_tree_base_iterator& y) { return x.node == y.node; } inline bool operator!=(const __rb_tree_base_iterator& x, const __rb_tree_base_iterator& y) { return x.node != y.node; } #ifndef __STL_CLASS_PARTIAL_SPECIALIZATION //返回迭代器类型 inline bidirectional_iterator_tag iterator_category(const __rb_tree_base_iterator&) { return bidirectional_iterator_tag(); } inline __rb_tree_base_iterator::difference_type* distance_type(const __rb_tree_base_iterator&) { return (__rb_tree_base_iterator::difference_type*) 0; } template <class Value, class Ref, class Ptr> inline Value* value_type(const __rb_tree_iterator<Value, Ref, Ptr>&) { return (Value*) 0; } #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ // 以下都是全域函式:__rb_tree_rotate_left(), __rb_tree_rotate_right(), // __rb_tree_rebalance(), __rb_tree_rebalance_for_erase() /* 新节点必须为红色节点。如果安插处的父节点为红色,就违反了红黑色规则(3)。此时要旋转和改变颜色 */ //左旋转 inline void __rb_tree_rotate_left(__rb_tree_node_base* x, __rb_tree_node_base*& root) { // x 为旋转点 __rb_tree_node_base* y = x->right; // y为x的右孩子 x->right = y->left; if (y->left !=0) y->left->parent = x; // 不要忘了回马枪设置父节点 y->parent = x->parent; // 令 y 完全顶替 x 的地位(必须将x对其父节点的关系完全接收过来) if (x == root) // x 为根节点 root = y; else if (x == x->parent->left) // x 为父节点的左孩子 x->parent->left = y; else // x 为父节点的右孩子 x->parent->right = y; y->left = x; x->parent = y; } //右旋转 inline void __rb_tree_rotate_right(__rb_tree_node_base* x, __rb_tree_node_base*& root) { // x 为旋转点 __rb_tree_node_base* y = x->left; // y x的左孩子 x->left = y->right; if (y->right != 0) y->right->parent = x; // 別忘了回马枪设置父节点 y->parent = x->parent; // 令 y 完全顶替 x 的地位(必须将x对其父节点的关系完全接收过来) if (x == root) // x 为根节点 root = y; else if (x == x->parent->right) // x 为父节点的右孩子 x->parent->right = y; else // x 为父节点的左孩子 x->parent->left = y; y->right = x; x->parent = y; } //重新令RB-tree平衡(改变颜色和旋转)参数x为新增节点,参数二为root节点 inline void __rb_tree_rebalance(__rb_tree_node_base* x, __rb_tree_node_base*& root) { x->color = __rb_tree_red; // 新节点比为红色 while (x != root && x->parent->color == __rb_tree_red) { // 父节点为红色 if (x->parent == x->parent->parent->left) { // 父节点为祖父节点的左孩子 __rb_tree_node_base* y = x->parent->parent->right; // 令y 为伯父节点 if (y && y->color == __rb_tree_red) { // 伯父节点存在,且为红色 x->parent->color = __rb_tree_black; // 更改父节点为黑色 y->color = __rb_tree_black; // 更改伯父节点为黑色 x->parent->parent->color = __rb_tree_red; // 更改祖父节点为红色 x = x->parent->parent; } else { // 无伯父节点或伯父节点为黑色(NULL就是黑色) if (x == x->parent->right) { // 新增节点为父节点的右孩子 x = x->parent; __rb_tree_rotate_left(x, root); // 第一个参数为左旋转点 } x->parent->color = __rb_tree_black; // 改变颜色,父节点为黑色 x->parent->parent->color = __rb_tree_red; __rb_tree_rotate_right(x->parent->parent, root); // 第一参数为右旋转点 } } else { // 父节点为祖父节点的右孩子 __rb_tree_node_base* y = x->parent->parent->left; // y为伯父节点 if (y && y->color == __rb_tree_red) { // 有伯父节点且为红色 x->parent->color = __rb_tree_black; // 更改父节点为黑色 y->color = __rb_tree_black; // 更改伯父节点为黑色 x->parent->parent->color = __rb_tree_red; // 更改祖父节点为红色 x = x->parent->parent; // 准备继续往上层检查…… } else { // 无伯父节点或伯父节点为黑色(NULL就是黑色) if (x == x->parent->left) { // 新节点为父节点的左孩子 x = x->parent; __rb_tree_rotate_right(x, root); // 第一个参数右旋转 } x->parent->color = __rb_tree_black; // 改变颜色,父节点为黑色 x->parent->parent->color = __rb_tree_red; __rb_tree_rotate_left(x->parent->parent, root); // 第一个参数做旋转 } } } // while 結束 root->color = __rb_tree_black; // 根节点永远为黑色 } //删除结点z inline __rb_tree_node_base* __rb_tree_rebalance_for_erase(__rb_tree_node_base* z, __rb_tree_node_base*& root, __rb_tree_node_base*& leftmost, __rb_tree_node_base*& rightmost) { __rb_tree_node_base* y = z; __rb_tree_node_base* x = 0; __rb_tree_node_base* x_parent = 0; if (y->left == 0) // z has at most one non-null child. y == z. x = y->right; // x might be null. else if (y->right == 0) // z has exactly one non-null child. y == z. x = y->left; // x is not null. else { // z has two non-null children. Set y to y = y->right; // z's successor. x might be null. while (y->left != 0) y = y->left; x = y->right; } if (y != z) { // relink y in place of z. y is z's successor z->left->parent = y; y->left = z->left; if (y != z->right) { x_parent = y->parent; if (x) x->parent = y->parent; y->parent->left = x; // y must be a left child y->right = z->right; z->right->parent = y; } else x_parent = y; if (root == z) root = y; else if (z->parent->left == z) z->parent->left = y; else z->parent->right = y; y->parent = z->parent; __STD::swap(y->color, z->color); y = z; // y now points to node to be actually deleted } else { // y == z x_parent = y->parent; if (x) x->parent = y->parent; if (root == z) root = x; else if (z->parent->left == z) z->parent->left = x; else z->parent->right = x; if (leftmost == z) if (z->right == 0) // z->left must be null also leftmost = z->parent; // makes leftmost == header if z == root else leftmost = __rb_tree_node_base::minimum(x); if (rightmost == z) if (z->left == 0) // z->right must be null also rightmost = z->parent; // makes rightmost == header if z == root else // x == z->left rightmost = __rb_tree_node_base::maximum(x); } if (y->color != __rb_tree_red) { while (x != root && (x == 0 || x->color == __rb_tree_black)) if (x == x_parent->left) { __rb_tree_node_base* w = x_parent->right; if (w->color == __rb_tree_red) { w->color = __rb_tree_black; x_parent->color = __rb_tree_red; __rb_tree_rotate_left(x_parent, root); w = x_parent->right; } if ((w->left == 0 || w->left->color == __rb_tree_black) && (w->right == 0 || w->right->color == __rb_tree_black)) { w->color = __rb_tree_red; x = x_parent; x_parent = x_parent->parent; } else { if (w->right == 0 || w->right->color == __rb_tree_black) { if (w->left) w->left->color = __rb_tree_black; w->color = __rb_tree_red; __rb_tree_rotate_right(w, root); w = x_parent->right; } w->color = x_parent->color; x_parent->color = __rb_tree_black; if (w->right) w->right->color = __rb_tree_black; __rb_tree_rotate_left(x_parent, root); break; } } else { // same as above, with right <-> left. __rb_tree_node_base* w = x_parent->left; if (w->color == __rb_tree_red) { w->color = __rb_tree_black; x_parent->color = __rb_tree_red; __rb_tree_rotate_right(x_parent, root); w = x_parent->left; } if ((w->right == 0 || w->right->color == __rb_tree_black) && (w->left == 0 || w->left->color == __rb_tree_black)) { w->color = __rb_tree_red; x = x_parent; x_parent = x_parent->parent; } else { if (w->left == 0 || w->left->color == __rb_tree_black) { if (w->right) w->right->color = __rb_tree_black; w->color = __rb_tree_red; __rb_tree_rotate_left(w, root); w = x_parent->left; } w->color = x_parent->color; x_parent->color = __rb_tree_black; if (w->left) w->left->color = __rb_tree_black; __rb_tree_rotate_right(x_parent, root); break; } } if (x) x->color = __rb_tree_black; } return y; } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc = alloc> class rb_tree { protected: typedef void* void_pointer; typedef __rb_tree_node_base* base_ptr; typedef __rb_tree_node<Value> rb_tree_node; typedef simple_alloc<rb_tree_node, Alloc> rb_tree_node_allocator; typedef __rb_tree_color_type color_type; public: //这里没有定义iterator,在后面定义 typedef Key key_type; typedef Value value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef rb_tree_node* link_type; typedef size_t size_type; typedef ptrdiff_t difference_type; protected: link_type get_node() { return rb_tree_node_allocator::allocate(); } void put_node(link_type p) { rb_tree_node_allocator::deallocate(p); } link_type create_node(const value_type& x) { link_type tmp = get_node(); // 配置空间 __STL_TRY { construct(&tmp->value_field, x); // 构建内容 } __STL_UNWIND(put_node(tmp)); return tmp; } link_type clone_node(link_type x) { // 复制一个节点(值和颜色) link_type tmp = create_node(x->value_field); tmp->color = x->color; tmp->left = 0; tmp->right = 0; return tmp; } void destroy_node(link_type p) { destroy(&p->value_field); // 析构 put_node(p); // 释放空间 } protected: // RB-tree 只以三个资料表现 size_type node_count; // 追踪记录树的大小(节点总数) link_type header; Compare key_compare; // 节点的键值比较判断准则。是个函数 function object。 //以下三个函数用来方便取得header的成员 link_type& root() const { return (link_type&) header->parent; } link_type& leftmost() const { return (link_type&) header->left; } link_type& rightmost() const { return (link_type&) header->right; } //以下六个函数用来方便取得节点x的成员。x为函数参数 static link_type& left(link_type x) { return (link_type&)(x->left); } static link_type& right(link_type x) { return (link_type&)(x->right); } static link_type& parent(link_type x) { return (link_type&)(x->parent); } static reference value(link_type x) { return x->value_field; } static const Key& key(link_type x) { return KeyOfValue()(value(x)); } static color_type& color(link_type x) { return (color_type&)(x->color); } //和上面六个作用相同,注意x参数类型不同。一个是基类指针,一个是派生类指针 static link_type& left(base_ptr x) { return (link_type&)(x->left); } static link_type& right(base_ptr x) { return (link_type&)(x->right); } static link_type& parent(base_ptr x) { return (link_type&)(x->parent); } static reference value(base_ptr x) { return ((link_type)x)->value_field; } static const Key& key(base_ptr x) { return KeyOfValue()(value(link_type(x)));} static color_type& color(base_ptr x) { return (color_type&)(link_type(x)->color); } //找最大值和最小值。node class 有这个功能函数 static link_type minimum(link_type x) { return (link_type) __rb_tree_node_base::minimum(x); } static link_type maximum(link_type x) { return (link_type) __rb_tree_node_base::maximum(x); } public: typedef __rb_tree_iterator<value_type, reference, pointer> iterator; typedef __rb_tree_iterator<value_type, const_reference, const_pointer> const_iterator; #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION typedef reverse_iterator<const_iterator> const_reverse_iterator; typedef reverse_iterator<iterator> reverse_iterator; #else /* __STL_CLASS_PARTIAL_SPECIALIZATION */ typedef reverse_bidirectional_iterator<iterator, value_type, reference, difference_type> reverse_iterator; typedef reverse_bidirectional_iterator<const_iterator, value_type, const_reference, difference_type> const_reverse_iterator; #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ private: iterator __insert(base_ptr x, base_ptr y, const value_type& v); link_type __copy(link_type x, link_type p); void __erase(link_type x); void init() { header = get_node(); // 产生一个节点空间,令header指向它 color(header) = __rb_tree_red; // 令 header 尾红色,用來区 header // 和 root(在 iterator.operator++ 中) root() = 0; leftmost() = header; // 令 header 的左孩子为自己。 rightmost() = header; // 令 header 的右孩子为自己。 } public: //默认构造函数 // allocation/deallocation rb_tree(const Compare& comp = Compare()) : node_count(0), key_compare(comp) { init(); } // 以另一个 rb_tree x 初始化 rb_tree(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x) : node_count(0), key_compare(x.key_compare) { header = get_node(); color(header) = __rb_tree_red; if (x.root() == 0) { // 如果 x 空树 root() = 0; leftmost() = header; rightmost() = header; } else { // x 不是空树 __STL_TRY { root() = __copy(x.root(), header); // 拷贝红黑树x } __STL_UNWIND(put_node(header)); leftmost() = minimum(root()); // 令 header 的左孩子为最小节点 rightmost() = maximum(root()); // 令 header 的右孩子为最大节点 } node_count = x.node_count; } ~rb_tree() { clear(); put_node(header); } rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& operator=(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x); public: // accessors: Compare key_comp() const { return key_compare; } iterator begin() { return leftmost(); } // RB 树的起始为最左(最小节点) const_iterator begin() const { return leftmost(); } iterator end() { return header; } // RB 树的终节点为header所指处 const_iterator end() const { return header; } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } bool empty() const { return node_count == 0; } size_type size() const { return node_count; } size_type max_size() const { return size_type(-1); } void swap(rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& t) { //RB-tree只有三个资料表现成员,所以两颗RB-tree互换时,只需互换3个成员 __STD::swap(header, t.header); __STD::swap(node_count, t.node_count); __STD::swap(key_compare, t.key_compare); } public: // insert/erase // 将 x 安插到 RB-tree 中(保持节点值独一无二)。 pair<iterator,bool> insert_unique(const value_type& x); // 将 x 安插到 RB-tree 中(允许重复节点) iterator insert_equal(const value_type& x); iterator insert_unique(iterator position, const value_type& x); iterator insert_equal(iterator position, const value_type& x); #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> void insert_unique(InputIterator first, InputIterator last); template <class InputIterator> void insert_equal(InputIterator first, InputIterator last); #else /* __STL_MEMBER_TEMPLATES */ void insert_unique(const_iterator first, const_iterator last); void insert_unique(const value_type* first, const value_type* last); void insert_equal(const_iterator first, const_iterator last); void insert_equal(const value_type* first, const value_type* last); #endif /* __STL_MEMBER_TEMPLATES */ void erase(iterator position); size_type erase(const key_type& x); void erase(iterator first, iterator last); void erase(const key_type* first, const key_type* last); void clear() { if (node_count != 0) { __erase(root()); leftmost() = header; root() = 0; rightmost() = header; node_count = 0; } } public: // 集合(set)的各种操作行为 iterator find(const key_type& x); const_iterator find(const key_type& x) const; size_type count(const key_type& x) const; iterator lower_bound(const key_type& x); const_iterator lower_bound(const key_type& x) const; iterator upper_bound(const key_type& x); const_iterator upper_bound(const key_type& x) const; pair<iterator,iterator> equal_range(const key_type& x); pair<const_iterator, const_iterator> equal_range(const key_type& x) const; public: // Debugging. bool __rb_verify() const; }; template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> inline bool operator==(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x, const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) { return x.size() == y.size() && equal(x.begin(), x.end(), y.begin()); } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> inline bool operator<(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x, const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) { return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> inline void swap(rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x, rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) { x.swap(y); } #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */ //重载赋值运算符= template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& rb_tree<Key, Value, KeyOfValue, Compare, Alloc>:: operator=(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x) { if (this != &x) {//防止自身赋值 // Note that Key may be a constant type. clear();//先清除 node_count = 0; key_compare = x.key_compare; if (x.root() == 0) { root() = 0; leftmost() = header; rightmost() = header; } else { root() = __copy(x.root(), header); leftmost() = minimum(root()); rightmost() = maximum(root()); node_count = x.node_count; } } return *this; } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>:: __insert(base_ptr x_, base_ptr y_, const Value& v) { //参数x_为新值安插点,参数y_为安插点之父节点,参数v 为新值 link_type x = (link_type) x_; link_type y = (link_type) y_; link_type z; //key_compare是键值得比较准则,是个函数或函数指针 if (y == header || x != 0 || key_compare(KeyOfValue()(v), key(y))) { z = create_node(v); // 产生一个新节点 left(y) = z; // 这使得当y为header时,leftmost()=z if (y == header) { root() = z; rightmost() = z; } else if (y == leftmost()) // 如果y为最左节点 leftmost() = z; // 维护leftmost(),使它永远指向最左节点 } else { z = create_node(v); right(y) = z; // 令新节点成为安插点之父节点y的右孩子 if (y == rightmost()) rightmost() = z; // 维护rightmost(),使它永远指向最右节点 } parent(z) = y; // 设定新节点的父节点 left(z) = 0; // 设定新孩子节点的左孩子 right(z) = 0; // 设定新孩子节点的右孩子 // 新节点的颜色将在 __rb_tree_rebalance() 设定并调整 __rb_tree_rebalance(z, header->parent); // 参数一为新增节点,参数二为root ++node_count; // 节点数增加 return iterator(z); // 返回迭代器,指向新增节点 } // 安插新值;允许键值重复。返回新插入节点的迭代器 template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::insert_equal(const Value& v) { link_type y = header; link_type x = root(); while (x != 0) { // 从根节点开始,向下寻找适当安插位置 y = x; x = key_compare(KeyOfValue()(v), key(x)) ? left(x) : right(x); } return __insert(x, y, v); } /* 不允许键值重复,否则安插无效。 返回值是个pair,第一个元素是个RB-tree迭代器,指向新增节点。 第二个元素表示安插是否成功。 */ template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> pair<typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator, bool> rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::insert_unique(const Value& v) { link_type y = header; link_type x = root(); bool comp = true; while (x != 0) { // 从根节点开始向下寻找适当安插位置 y = x; comp = key_compare(KeyOfValue()(v), key(x)); // v 键值小于目前节点的键值? x = comp ? left(x) : right(x); // 遇「大」往左,遇「小于或等于」往右 } //离开while循环之后,y所指即为安插点的父节点,x必为叶子节点 iterator j = iterator(y); // 令迭代器j指向安插点之父节点 y if (comp) //如果离开while循环时comp为真,表示 父节点键值>v ,将安插在左孩子处 if (j == begin()) // 如果j是最左节点 return pair<iterator,bool>(__insert(x, y, v), true); // 以上,x 为安插点,y 为安插点之父节点,v 为新值。 else // 否则(安插点之父节点不是最左节点) --j; // 调整 j,回头准备测试... if (key_compare(key(j.node), KeyOfValue()(v))) // 小于新值(表示遇「小」,将安插于右侧) return pair<iterator,bool>(__insert(x, y, v), true); //若运行到这里,表示键值有重复,不应该插入 return pair<iterator,bool>(j, false); } template <class Key, class Val, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::iterator rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::insert_unique(iterator position, const Val& v) { if (position.node == header->left) // begin() if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node))) return __insert(position.node, position.node, v); // first argument just needs to be non-null else return insert_unique(v).first; else if (position.node == header) // end() if (key_compare(key(rightmost()), KeyOfValue()(v))) return __insert(0, rightmost(), v); else return insert_unique(v).first; else { iterator before = position; --before; if (key_compare(key(before.node), KeyOfValue()(v)) && key_compare(KeyOfValue()(v), key(position.node))) if (right(before.node) == 0) return __insert(0, before.node, v); else return __insert(position.node, position.node, v); // first argument just needs to be non-null else return insert_unique(v).first; } } template <class Key, class Val, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::iterator rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::insert_equal(iterator position, const Val& v) { if (position.node == header->left) // begin() if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node))) return __insert(position.node, position.node, v); // first argument just needs to be non-null else return insert_equal(v); else if (position.node == header) // end() if (!key_compare(KeyOfValue()(v), key(rightmost()))) return __insert(0, rightmost(), v); else return insert_equal(v); else { iterator before = position; --before; if (!key_compare(KeyOfValue()(v), key(before.node)) && !key_compare(key(position.node), KeyOfValue()(v))) if (right(before.node) == 0) return __insert(0, before.node, v); else return __insert(position.node, position.node, v); // first argument just needs to be non-null else return insert_equal(v); } } #ifdef __STL_MEMBER_TEMPLATES template <class K, class V, class KoV, class Cmp, class Al> template<class II> void rb_tree<K, V, KoV, Cmp, Al>::insert_equal(II first, II last) { for ( ; first != last; ++first) insert_equal(*first); } template <class K, class V, class KoV, class Cmp, class Al> template<class II> void rb_tree<K, V, KoV, Cmp, Al>::insert_unique(II first, II last) { for ( ; first != last; ++first) insert_unique(*first); } #else /* __STL_MEMBER_TEMPLATES */ template <class K, class V, class KoV, class Cmp, class Al> void rb_tree<K, V, KoV, Cmp, Al>::insert_equal(const V* first, const V* last) { for ( ; first != last; ++first) insert_equal(*first); } template <class K, class V, class KoV, class Cmp, class Al> void rb_tree<K, V, KoV, Cmp, Al>::insert_equal(const_iterator first, const_iterator last) { for ( ; first != last; ++first) insert_equal(*first); } template <class K, class V, class KoV, class Cmp, class A> void rb_tree<K, V, KoV, Cmp, A>::insert_unique(const V* first, const V* last) { for ( ; first != last; ++first) insert_unique(*first); } template <class K, class V, class KoV, class Cmp, class A> void rb_tree<K, V, KoV, Cmp, A>::insert_unique(const_iterator first, const_iterator last) { for ( ; first != last; ++first) insert_unique(*first); } #endif /* __STL_MEMBER_TEMPLATES */ template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> inline void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(iterator position) { link_type y = (link_type) __rb_tree_rebalance_for_erase(position.node, header->parent, header->left, header->right); destroy_node(y); --node_count; } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::size_type rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(const Key& x) { pair<iterator,iterator> p = equal_range(x); size_type n = 0; distance(p.first, p.second, n); erase(p.first, p.second); return n; } //复制x到p template <class K, class V, class KeyOfValue, class Compare, class Alloc> typename rb_tree<K, V, KeyOfValue, Compare, Alloc>::link_type rb_tree<K, V, KeyOfValue, Compare, Alloc>::__copy(link_type x, link_type p) { // structural copy. x and p must be non-null. link_type top = clone_node(x); top->parent = p; __STL_TRY { if (x->right) top->right = __copy(right(x), top); p = top; x = left(x); while (x != 0) { link_type y = clone_node(x); p->left = y; y->parent = p; if (x->right) y->right = __copy(right(x), y); p = y; x = left(x); } } __STL_UNWIND(__erase(top)); return top; } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::__erase(link_type x) { // erase without rebalancing while (x != 0) { __erase(right(x)); link_type y = left(x); destroy_node(x); x = y; } } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(iterator first, iterator last) { if (first == begin() && last == end()) clear(); else while (first != last) erase(first++); } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(const Key* first, const Key* last) { while (first != last) erase(*first++); } //查找RB树中是否有键值为k的节点 template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const Key& k) { link_type y = header; // Last node which is not less than k. link_type x = root(); // Current node. while (x != 0) // key_compare 是 function object。 if (!key_compare(key(x), k)) // 运行到这里,表示x键值大于k。遇到大值就向左走。 y = x, x = left(x); // 注意语法!逗号表达式 else // 运行到这里,表示x键值小于k。遇到小值就向右走。 x = right(x); iterator j = iterator(y); return (j == end() || key_compare(k, key(j.node))) ? end() : j; } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const Key& k) const { link_type y = header; /* Last node which is not less than k. */ link_type x = root(); /* Current node. */ while (x != 0) { if (!key_compare(key(x), k)) y = x, x = left(x); else x = right(x); } const_iterator j = const_iterator(y); return (j == end() || key_compare(k, key(j.node))) ? end() : j; } //计算RB树中键值为k的节点的个数 template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::size_type rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::count(const Key& k) const { pair<const_iterator, const_iterator> p = equal_range(k); size_type n = 0; distance(p.first, p.second, n); return n; } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::lower_bound(const Key& k) { link_type y = header; /* Last node which is not less than k. */ link_type x = root(); /* Current node. */ while (x != 0) if (!key_compare(key(x), k)) y = x, x = left(x); else x = right(x); return iterator(y); } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::lower_bound(const Key& k) const { link_type y = header; /* Last node which is not less than k. */ link_type x = root(); /* Current node. */ while (x != 0) if (!key_compare(key(x), k)) y = x, x = left(x); else x = right(x); return const_iterator(y); } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::upper_bound(const Key& k) { link_type y = header; /* Last node which is greater than k. */ link_type x = root(); /* Current node. */ while (x != 0) if (key_compare(k, key(x))) y = x, x = left(x); else x = right(x); return iterator(y); } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::upper_bound(const Key& k) const { link_type y = header; /* Last node which is greater than k. */ link_type x = root(); /* Current node. */ while (x != 0) if (key_compare(k, key(x))) y = x, x = left(x); else x = right(x); return const_iterator(y); } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> inline pair<typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator, typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator> rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::equal_range(const Key& k) { return pair<iterator, iterator>(lower_bound(k), upper_bound(k)); } template <class Key, class Value, class KoV, class Compare, class Alloc> inline pair<typename rb_tree<Key, Value, KoV, Compare, Alloc>::const_iterator, typename rb_tree<Key, Value, KoV, Compare, Alloc>::const_iterator> rb_tree<Key, Value, KoV, Compare, Alloc>::equal_range(const Key& k) const { return pair<const_iterator,const_iterator>(lower_bound(k), upper_bound(k)); } //计算从 node 至 root路径中的黑节点数量 inline int __black_count(__rb_tree_node_base* node, __rb_tree_node_base* root) { if (node == 0) return 0; else { int bc = node->color == __rb_tree_black ? 1 : 0; if (node == root) return bc; else return bc + __black_count(node->parent, root); // 累加 } } //验证己身这棵树是否符合RB树条件 template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> bool rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::__rb_verify() const { // 空树,符合RB树标准 if (node_count == 0 || begin() == end()) return node_count == 0 && begin() == end() && header->left == header && header->right == header; //最左(叶)节点至 root 路径的黑节点个数 int len = __black_count(leftmost(), root()); //一下走访整个RB树,针对每个节点(从最小奥最大)…… for (const_iterator it = begin(); it != end(); ++it) { link_type x = (link_type) it.node; // __rb_tree_base_iterator::node link_type L = left(x); // 这是左子节点 link_type R = right(x); // 这是右子节点 if (x->color == __rb_tree_red) if ((L && L->color == __rb_tree_red) || (R && R->color == __rb_tree_red)) return false; // 父子节点同为红色,不合符RB树要求 if (L && key_compare(key(x), key(L))) // 当前节点的键值小于左孩子节点的键值 return false; // 不符合二叉查找树的要求 if (R && key_compare(key(R), key(x))) // 当前节点的键值大于右孩子节点的键值 return false; // 不符合二叉查找树的要求 //[叶子结点到root]路径内的黑色节点数,与[最左节点至root]路径内的黑色节点不同。不符合RB树要求 if (!L && !R && __black_count(x, root()) != len) return false; } if (leftmost() != __rb_tree_node_base::minimum(root())) return false; // 最左节点不为最小节点,不符合二叉查找树的要求。 if (rightmost() != __rb_tree_node_base::maximum(root())) return false; // 最右节点不为最大节点,不符不符合二叉查找树的要求。 return true; } __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_TREE_H */ // Local Variables: // mode:C++ // End:
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。