首页 > 代码库 > STL源码剖析 容器 stl_tree.h
STL源码剖析 容器 stl_tree.h
本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie
RB-tree(红黑树)
--------------------------------------------------------------------------平衡二叉搜索树 --> 平衡可提高搜索效率
常见的平衡二叉搜索树有:
AVL-tree(任何节点的左右子树高度相差最多 1)、红黑树、AA-tree
AVL-tree
破坏平衡的情况及恢复平衡的方法
恢复时要先找到失去平衡的点
外侧插入 --> 单旋转
内侧插入 --> 双旋转
图5-10
图5-11
图5-12
红黑树是一种平衡二叉搜索树,并满足以下规则:
1.每个节点不是红色就是黑色
2.根节点为黑色
3.如果节点为红,子节点必须为黑 --> 新增节点的父节点必须为黑
4.任一节点至 NULL 的任何路径,所含的黑节点数必须相同 --> 新增节点必须为红
如果新节点根据二叉搜索树的规则到达其插入点,却未能符合上述条件,必须调整颜色并旋转树形
// 不懂红黑树的实现为什么要采用双层架构的形式,有什么好处?
#ifndef __SGI_STL_INTERNAL_TREE_H #define __SGI_STL_INTERNAL_TREE_H #include <stl_algobase.h> #include <stl_alloc.h> #include <stl_construct.h> #include <stl_function.h> __STL_BEGIN_NAMESPACE typedef bool __rb_tree_color_type; const __rb_tree_color_type __rb_tree_red = false; //红色为0 const __rb_tree_color_type __rb_tree_black = true; //黑色为1 struct __rb_tree_node_base { typedef __rb_tree_color_type color_type; typedef __rb_tree_node_base* base_ptr; color_type color; //节点颜色,非红即黑 base_ptr parent; //RB-tree 的各种操作时常需要上溯其你节点,所以要特别在数据结构中安排一个 parent 指针 base_ptr left; //指向左节点 base_ptr right; //指向右节点 //一直向左走,就会找到最小值 static base_ptr minimum(base_ptr x) { while (x->left != 0) x = x->left; return x; } //一直向右走,就会找到最大值 static base_ptr maximum(base_ptr x) { while (x->right != 0) x = x->right; return x; } }; template <class Value> struct __rb_tree_node : public __rb_tree_node_base { typedef __rb_tree_node<Value>* link_type; Value value_field; //节点值 }; struct __rb_tree_base_iterator { typedef __rb_tree_node_base::base_ptr base_ptr; typedef bidirectional_iterator_tag iterator_category; typedef ptrdiff_t difference_type; base_ptr node; // 用来与容器之间产生一个连结关系 void increment() //逻辑有点复杂,画张图看看比较好懂 { if (node->right != 0) { //如果有右子节点 node = node->right; //就向右走 while (node->left != 0) //然后一直往左子树走到底 node = node->left; //既是解答 } else { //没有右子节点 base_ptr y = node->parent; //找到父节点 while (node == y->right) { //如果现行节点本身是个右子节点 node = y; //就一直上溯,直到"不为右子节点"止 y = y->parent; } if (node->right != y) //若此时的右子节点不等于此时的父节点 node = y; //此时的父节点即为解答,否则此时的 node 为解答 } } void decrement() //这个的逻辑更复杂。。。 { if (node->color == __rb_tree_red && //如果是红节点,且父节点的父节点等于自己,右子节点即为解答 --> 什么情况父节点的父节点等于自己? node->parent->parent == node) node = node->right; else if (node->left != 0) { base_ptr y = node->left; while (y->right != 0) y = y->right; node = y; } else { base_ptr y = node->parent; while (node == y->left) { node = y; y = y->parent; } node = y; } } }; //RB-tree 的正规迭代器 template <class Value, class Ref, class Ptr> struct __rb_tree_iterator : public __rb_tree_base_iterator { typedef Value value_type; typedef Ref reference; typedef Ptr pointer; typedef __rb_tree_iterator<Value, Value&, Value*> iterator; typedef __rb_tree_iterator<Value, const Value&, const Value*> const_iterator; typedef __rb_tree_iterator<Value, Ref, Ptr> self; typedef __rb_tree_node<Value>* link_type; __rb_tree_iterator() {} __rb_tree_iterator(link_type x) { node = x; } __rb_tree_iterator(const iterator& it) { node = it.node; } reference operator*() const { return link_type(node)->value_field; } #ifndef __SGI_STL_NO_ARROW_OPERATOR pointer operator->() const { return &(operator*()); } #endif /* __SGI_STL_NO_ARROW_OPERATOR */ self& operator++() { increment(); return *this; } self operator++(int) { self tmp = *this; increment(); return tmp; } self& operator--() { decrement(); return *this; } self operator--(int) { self tmp = *this; decrement(); return tmp; } }; inline bool operator==(const __rb_tree_base_iterator& x, const __rb_tree_base_iterator& y) { return x.node == y.node; } inline bool operator!=(const __rb_tree_base_iterator& x, const __rb_tree_base_iterator& y) { return x.node != y.node; } #ifndef __STL_CLASS_PARTIAL_SPECIALIZATION inline bidirectional_iterator_tag iterator_category(const __rb_tree_base_iterator&) { return bidirectional_iterator_tag(); } inline __rb_tree_base_iterator::difference_type* distance_type(const __rb_tree_base_iterator&) { return (__rb_tree_base_iterator::difference_type*) 0; } template <class Value, class Ref, class Ptr> inline Value* value_type(const __rb_tree_iterator<Value, Ref, Ptr>&) { return (Value*) 0; } #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ inline void __rb_tree_rotate_left(__rb_tree_node_base* x, __rb_tree_node_base*& root) { __rb_tree_node_base* y = x->right; x->right = y->left; if (y->left !=0) y->left->parent = x; y->parent = x->parent; if (x == root) root = y; else if (x == x->parent->left) x->parent->left = y; else x->parent->right = y; y->left = x; x->parent = y; } inline void __rb_tree_rotate_right(__rb_tree_node_base* x, __rb_tree_node_base*& root) { __rb_tree_node_base* y = x->left; x->left = y->right; if (y->right != 0) y->right->parent = x; y->parent = x->parent; if (x == root) root = y; else if (x == x->parent->right) x->parent->right = y; else x->parent->left = y; y->right = x; x->parent = y; } //重新令树形平衡(改变颜色及旋转树形) //参数一为新增节点,参数二为 root inline void __rb_tree_rebalance(__rb_tree_node_base* x, __rb_tree_node_base*& root) { x->color = __rb_tree_red; //新节点为红 //父节点为红的时候才要令树形平衡 while (x != root && x->parent->color == __rb_tree_red) { //父节点是祖父节点的左子节点 if (x->parent == x->parent->parent->left) { __rb_tree_node_base* y = x->parent->parent->right; //伯父节点存在,且为红 --> 变色即可 if (y && y->color == __rb_tree_red) { x->parent->color = __rb_tree_black; y->color = __rb_tree_black; x->parent->parent->color = __rb_tree_red; x = x->parent->parent; } //无伯父节点,或者伯父节点为黑 --> 旋转 else { if (x == x->parent->right) { x = x->parent; __rb_tree_rotate_left(x, root); } x->parent->color = __rb_tree_black; x->parent->parent->color = __rb_tree_red; __rb_tree_rotate_right(x->parent->parent, root); } } //父节点是祖父节点的右子节点 else { __rb_tree_node_base* y = x->parent->parent->left; //伯父节点存在,且为红 --> 变色即可 if (y && y->color == __rb_tree_red) { x->parent->color = __rb_tree_black; y->color = __rb_tree_black; x->parent->parent->color = __rb_tree_red; x = x->parent->parent; } //无伯父节点,或者伯父节点为黑 --> 旋转 else { if (x == x->parent->left) { x = x->parent; __rb_tree_rotate_right(x, root); } x->parent->color = __rb_tree_black; x->parent->parent->color = __rb_tree_red; __rb_tree_rotate_left(x->parent->parent, root); } } } root->color = __rb_tree_black; //根节点必须为黑色 } inline __rb_tree_node_base* __rb_tree_rebalance_for_erase(__rb_tree_node_base* z, __rb_tree_node_base*& root, __rb_tree_node_base*& leftmost, __rb_tree_node_base*& rightmost) { __rb_tree_node_base* y = z; __rb_tree_node_base* x = 0; __rb_tree_node_base* x_parent = 0; if (y->left == 0) // z has at most one non-null child. y == z. x = y->right; // x might be null. else if (y->right == 0) // z has exactly one non-null child. y == z. x = y->left; // x is not null. else { // z has two non-null children. Set y to y = y->right; // z's successor. x might be null. while (y->left != 0) y = y->left; x = y->right; } if (y != z) { // relink y in place of z. y is z's successor z->left->parent = y; y->left = z->left; if (y != z->right) { x_parent = y->parent; if (x) x->parent = y->parent; y->parent->left = x; // y must be a left child y->right = z->right; z->right->parent = y; } else x_parent = y; if (root == z) root = y; else if (z->parent->left == z) z->parent->left = y; else z->parent->right = y; y->parent = z->parent; __STD::swap(y->color, z->color); y = z; // y now points to node to be actually deleted } else { // y == z x_parent = y->parent; if (x) x->parent = y->parent; if (root == z) root = x; else if (z->parent->left == z) z->parent->left = x; else z->parent->right = x; if (leftmost == z) if (z->right == 0) // z->left must be null also leftmost = z->parent; // makes leftmost == header if z == root else leftmost = __rb_tree_node_base::minimum(x); if (rightmost == z) if (z->left == 0) // z->right must be null also rightmost = z->parent; // makes rightmost == header if z == root else // x == z->left rightmost = __rb_tree_node_base::maximum(x); } if (y->color != __rb_tree_red) { while (x != root && (x == 0 || x->color == __rb_tree_black)) if (x == x_parent->left) { __rb_tree_node_base* w = x_parent->right; if (w->color == __rb_tree_red) { w->color = __rb_tree_black; x_parent->color = __rb_tree_red; __rb_tree_rotate_left(x_parent, root); w = x_parent->right; } if ((w->left == 0 || w->left->color == __rb_tree_black) && (w->right == 0 || w->right->color == __rb_tree_black)) { w->color = __rb_tree_red; x = x_parent; x_parent = x_parent->parent; } else { if (w->right == 0 || w->right->color == __rb_tree_black) { if (w->left) w->left->color = __rb_tree_black; w->color = __rb_tree_red; __rb_tree_rotate_right(w, root); w = x_parent->right; } w->color = x_parent->color; x_parent->color = __rb_tree_black; if (w->right) w->right->color = __rb_tree_black; __rb_tree_rotate_left(x_parent, root); break; } } else { // same as above, with right <-> left. __rb_tree_node_base* w = x_parent->left; if (w->color == __rb_tree_red) { w->color = __rb_tree_black; x_parent->color = __rb_tree_red; __rb_tree_rotate_right(x_parent, root); w = x_parent->left; } if ((w->right == 0 || w->right->color == __rb_tree_black) && (w->left == 0 || w->left->color == __rb_tree_black)) { w->color = __rb_tree_red; x = x_parent; x_parent = x_parent->parent; } else { if (w->left == 0 || w->left->color == __rb_tree_black) { if (w->right) w->right->color = __rb_tree_black; w->color = __rb_tree_red; __rb_tree_rotate_left(w, root); w = x_parent->left; } w->color = x_parent->color; x_parent->color = __rb_tree_black; if (w->left) w->left->color = __rb_tree_black; __rb_tree_rotate_right(x_parent, root); break; } } if (x) x->color = __rb_tree_black; } return y; } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc = alloc> class rb_tree { protected: typedef void* void_pointer; typedef __rb_tree_node_base* base_ptr; typedef __rb_tree_node<Value> rb_tree_node; typedef simple_alloc<rb_tree_node, Alloc> rb_tree_node_allocator; typedef __rb_tree_color_type color_type; public: typedef Key key_type; typedef Value value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef rb_tree_node* link_type; typedef size_t size_type; typedef ptrdiff_t difference_type; protected: link_type get_node() { return rb_tree_node_allocator::allocate(); } void put_node(link_type p) { rb_tree_node_allocator::deallocate(p); } link_type create_node(const value_type& x) { link_type tmp = get_node(); //配置空间 __STL_TRY { construct(&tmp->value_field, x); //构造内容 } __STL_UNWIND(put_node(tmp)); return tmp; } link_type clone_node(link_type x) { //复制一个节点 link_type tmp = create_node(x->value_field); tmp->color = x->color; tmp->left = 0; tmp->right = 0; return tmp; } void destroy_node(link_type p) { destroy(&p->value_field); //析构内容 put_node(p); //释放内存 } protected: size_type node_count; // 记录树的节点数量 link_type header; //? header 是什么 ?--> // 小技巧:为根节点设计的一个额外父节点 // header 的父节点指向根节点,左子节点指向最小节点,右子节点指向最大节点 Compare key_compare; //节点间的键值大小比较准则,是个 function object // header 的 parent, left, right 分别记录了 根节点、最左节点、最右节点 ?? link_type& root() const { return (link_type&) header->parent; } link_type& leftmost() const { return (link_type&) header->left; } link_type& rightmost() const { return (link_type&) header->right; } // 取得 x 的成员,x 的类型是 link_type static link_type& left(link_type x) { return (link_type&)(x->left); } static link_type& right(link_type x) { return (link_type&)(x->right); } static link_type& parent(link_type x) { return (link_type&)(x->parent); } static reference value(link_type x) { return x->value_field; } static const Key& key(link_type x) { return KeyOfValue()(value(x)); } // ? KeyOfValue 是个 function object ? 在哪定义? static color_type& color(link_type x) { return (color_type&)(x->color); } // 取得 x 的成员,x 的类型是 base_ptr static link_type& left(base_ptr x) { return (link_type&)(x->left); } static link_type& right(base_ptr x) { return (link_type&)(x->right); } static link_type& parent(base_ptr x) { return (link_type&)(x->parent); } static reference value(base_ptr x) { return ((link_type)x)->value_field; } static const Key& key(base_ptr x) { return KeyOfValue()(value(link_type(x)));} static color_type& color(base_ptr x) { return (color_type&)(link_type(x)->color); } //求取极大值和极小值。 node class 有实现此功能,交给它们完成 static link_type minimum(link_type x) { return (link_type) __rb_tree_node_base::minimum(x); } static link_type maximum(link_type x) { return (link_type) __rb_tree_node_base::maximum(x); } public: typedef __rb_tree_iterator<value_type, reference, pointer> iterator; typedef __rb_tree_iterator<value_type, const_reference, const_pointer> const_iterator; #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION typedef reverse_iterator<const_iterator> const_reverse_iterator; typedef reverse_iterator<iterator> reverse_iterator; #else /* __STL_CLASS_PARTIAL_SPECIALIZATION */ typedef reverse_bidirectional_iterator<iterator, value_type, reference, difference_type> reverse_iterator; typedef reverse_bidirectional_iterator<const_iterator, value_type, const_reference, difference_type> const_reverse_iterator; #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ private: iterator __insert(base_ptr x, base_ptr y, const value_type& v); link_type __copy(link_type x, link_type p); void __erase(link_type x); void init() { header = get_node(); //产生一个节点空间,令 header 指向它 color(header) = __rb_tree_red; // used to distinguish header from --> 不懂为什么要将 header 设置为红色 // root, in iterator.operator++ root() = 0; //令 header 的父节点为 NULL leftmost() = header; //令 header 的左子节点为自己 rightmost() = header; //令 header 的右子节点为自己 } public: // allocation/deallocation rb_tree(const Compare& comp = Compare()) : node_count(0), key_compare(comp) { init(); } rb_tree(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x) : node_count(0), key_compare(x.key_compare) { header = get_node(); color(header) = __rb_tree_red; if (x.root() == 0) { root() = 0; leftmost() = header; rightmost() = header; } else { __STL_TRY { root() = __copy(x.root(), header); } __STL_UNWIND(put_node(header)); leftmost() = minimum(root()); rightmost() = maximum(root()); } node_count = x.node_count; } ~rb_tree() { clear(); put_node(header); } rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& operator=(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x); public: // accessors: Compare key_comp() const { return key_compare; } iterator begin() { return leftmost(); } // RB 树的起头为最左节点处 const_iterator begin() const { return leftmost(); } iterator end() { return header; } // RB 树的终点为 header 所指处 ?? const_iterator end() const { return header; } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } bool empty() const { return node_count == 0; } size_type size() const { return node_count; } size_type max_size() const { return size_type(-1); } void swap(rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& t) { __STD::swap(header, t.header); __STD::swap(node_count, t.node_count); __STD::swap(key_compare, t.key_compare); } public: // insert/erase pair<iterator,bool> insert_unique(const value_type& x); iterator insert_equal(const value_type& x); iterator insert_unique(iterator position, const value_type& x); iterator insert_equal(iterator position, const value_type& x); #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> void insert_unique(InputIterator first, InputIterator last); template <class InputIterator> void insert_equal(InputIterator first, InputIterator last); #else /* __STL_MEMBER_TEMPLATES */ void insert_unique(const_iterator first, const_iterator last); void insert_unique(const value_type* first, const value_type* last); void insert_equal(const_iterator first, const_iterator last); void insert_equal(const value_type* first, const value_type* last); #endif /* __STL_MEMBER_TEMPLATES */ void erase(iterator position); size_type erase(const key_type& x); void erase(iterator first, iterator last); void erase(const key_type* first, const key_type* last); void clear() { if (node_count != 0) { __erase(root()); leftmost() = header; root() = 0; rightmost() = header; node_count = 0; } } public: // set operations: iterator find(const key_type& x); const_iterator find(const key_type& x) const; size_type count(const key_type& x) const; iterator lower_bound(const key_type& x); const_iterator lower_bound(const key_type& x) const; iterator upper_bound(const key_type& x); const_iterator upper_bound(const key_type& x) const; pair<iterator,iterator> equal_range(const key_type& x); pair<const_iterator, const_iterator> equal_range(const key_type& x) const; public: // Debugging. bool __rb_verify() const; }; template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> inline bool operator==(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x, const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) { return x.size() == y.size() && equal(x.begin(), x.end(), y.begin()); } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> inline bool operator<(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x, const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) { return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> inline void swap(rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x, rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) { x.swap(y); } #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */ template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& rb_tree<Key, Value, KeyOfValue, Compare, Alloc>:: operator=(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x) { if (this != &x) { // Note that Key may be a constant type. clear(); node_count = 0; key_compare = x.key_compare; if (x.root() == 0) { root() = 0; leftmost() = header; rightmost() = header; } else { root() = __copy(x.root(), header); leftmost() = minimum(root()); rightmost() = maximum(root()); node_count = x.node_count; } } return *this; } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>:: __insert(base_ptr x_, base_ptr y_, const Value& v) { // x 为新值插入点, y 为插入点之父节点,v 为新值 link_type x = (link_type) x_; link_type y = (link_type) y_; link_type z; // 遇"大",往左插入新值 if (y == header || x != 0 || key_compare(KeyOfValue()(v), key(y))) { // x 不是一定等于 0 吗? z = create_node(v); left(y) = z; if (y == header) { //这使得当 y 为 header 时(即此时树为空), leftmost() = z root() = z; rightmost() = z; } else if (y == leftmost()) //当 y 为最左节点时,更新 leftmost() ,使它永远指向最左节点 leftmost() = z; } // 遇"小",往右插入新值 else { z = create_node(v); right(y) = z; if (y == rightmost()) //当 y 为最右节点时,更新 rightmost() ,使它永远指向最右节点 rightmost() = z; } // 新增的 z 节点的父、左、右节点 parent(z) = y; left(z) = 0; right(z) = 0; //调整 RB-tree (旋转并改变颜色) __rb_tree_rebalance(z, header->parent); ++node_count; //节点累计加1 return iterator(z); //返回指向新节点的迭代器 } // 将 x 插入到 RB-tree 中(保持节点值独一无二) template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::insert_equal(const Value& v) { link_type y = header; // y 记录父节点 link_type x = root(); while (x != 0) { //从根节点开始,往下寻找适当的插入点 y = x; //遇"大"往左,遇"小于或等于"则往右 x = key_compare(KeyOfValue()(v), key(x)) ? left(x) : right(x); //KeyOfValue 是一个重载了 operator() 的类,语句 KeyOfValue() 产生了该类的一个对象,该对象可像函数一样被调用,称为函数对象 } return __insert(x, y, v); // x 为新值插入点, y 为插入点之父节点, v 为新值 } // 将 x 插入到 RB-tree 中(允许节点值重复) // 返回一个 pair ,第一元素是个 RB-tree 迭代器,指向新增节点;第二元素表示插入成功与否 template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> pair<typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator, bool> rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::insert_unique(const Value& v) { link_type y = header; link_type x = root(); //从根节点开始 bool comp = true; while (x != 0) { //从根节点开始,往下寻找适当的插入点 y = x; //记录父节点 comp = key_compare(KeyOfValue()(v), key(x)); x = comp ? left(x) : right(x); //遇"大"则往左,遇"小于或等于"则往右 } iterator j = iterator(y); if (comp) //遇"大",将插入于左侧 if (j == begin()) return pair<iterator,bool>(__insert(x, y, v), true); else --j; if (key_compare(key(j.node), KeyOfValue()(v))) //遇"小",将插入于右侧 return pair<iterator,bool>(__insert(x, y, v), true); return pair<iterator,bool>(j, false); // 相等的,不插入 } template <class Key, class Val, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::iterator rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::insert_unique(iterator position, const Val& v) { if (position.node == header->left) // begin() if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node))) return __insert(position.node, position.node, v); // first argument just needs to be non-null else return insert_unique(v).first; else if (position.node == header) // end() if (key_compare(key(rightmost()), KeyOfValue()(v))) return __insert(0, rightmost(), v); else return insert_unique(v).first; else { iterator before = position; --before; if (key_compare(key(before.node), KeyOfValue()(v)) && key_compare(KeyOfValue()(v), key(position.node))) if (right(before.node) == 0) return __insert(0, before.node, v); else return __insert(position.node, position.node, v); // first argument just needs to be non-null else return insert_unique(v).first; } } template <class Key, class Val, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::iterator rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::insert_equal(iterator position, const Val& v) { if (position.node == header->left) // begin() if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node))) return __insert(position.node, position.node, v); // first argument just needs to be non-null else return insert_equal(v); else if (position.node == header) // end() if (!key_compare(KeyOfValue()(v), key(rightmost()))) return __insert(0, rightmost(), v); else return insert_equal(v); else { iterator before = position; --before; if (!key_compare(KeyOfValue()(v), key(before.node)) && !key_compare(key(position.node), KeyOfValue()(v))) if (right(before.node) == 0) return __insert(0, before.node, v); else return __insert(position.node, position.node, v); // first argument just needs to be non-null else return insert_equal(v); } } #ifdef __STL_MEMBER_TEMPLATES template <class K, class V, class KoV, class Cmp, class Al> template<class II> void rb_tree<K, V, KoV, Cmp, Al>::insert_equal(II first, II last) { for ( ; first != last; ++first) insert_equal(*first); } template <class K, class V, class KoV, class Cmp, class Al> template<class II> void rb_tree<K, V, KoV, Cmp, Al>::insert_unique(II first, II last) { for ( ; first != last; ++first) insert_unique(*first); } #else /* __STL_MEMBER_TEMPLATES */ template <class K, class V, class KoV, class Cmp, class Al> void rb_tree<K, V, KoV, Cmp, Al>::insert_equal(const V* first, const V* last) { for ( ; first != last; ++first) insert_equal(*first); } template <class K, class V, class KoV, class Cmp, class Al> void rb_tree<K, V, KoV, Cmp, Al>::insert_equal(const_iterator first, const_iterator last) { for ( ; first != last; ++first) insert_equal(*first); } template <class K, class V, class KoV, class Cmp, class A> void rb_tree<K, V, KoV, Cmp, A>::insert_unique(const V* first, const V* last) { for ( ; first != last; ++first) insert_unique(*first); } template <class K, class V, class KoV, class Cmp, class A> void rb_tree<K, V, KoV, Cmp, A>::insert_unique(const_iterator first, const_iterator last) { for ( ; first != last; ++first) insert_unique(*first); } #endif /* __STL_MEMBER_TEMPLATES */ template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> inline void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(iterator position) { link_type y = (link_type) __rb_tree_rebalance_for_erase(position.node, header->parent, header->left, header->right); destroy_node(y); --node_count; } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::size_type rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(const Key& x) { pair<iterator,iterator> p = equal_range(x); size_type n = 0; distance(p.first, p.second, n); erase(p.first, p.second); return n; } template <class K, class V, class KeyOfValue, class Compare, class Alloc> typename rb_tree<K, V, KeyOfValue, Compare, Alloc>::link_type rb_tree<K, V, KeyOfValue, Compare, Alloc>::__copy(link_type x, link_type p) { // structural copy. x and p must be non-null. link_type top = clone_node(x); top->parent = p; __STL_TRY { if (x->right) top->right = __copy(right(x), top); p = top; x = left(x); while (x != 0) { link_type y = clone_node(x); p->left = y; y->parent = p; if (x->right) y->right = __copy(right(x), y); p = y; x = left(x); } } __STL_UNWIND(__erase(top)); return top; } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::__erase(link_type x) { // erase without rebalancing while (x != 0) { __erase(right(x)); link_type y = left(x); destroy_node(x); x = y; } } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(iterator first, iterator last) { if (first == begin() && last == end()) clear(); else while (first != last) erase(first++); } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(const Key* first, const Key* last) { while (first != last) erase(*first++); } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const Key& k) { link_type y = header; // Last node which is not less than k. link_type x = root(); // Current node. while (x != 0) //如果当前键值大于搜索键值,往左走 if (!key_compare(key(x), k)) y = x, x = left(x); //如果当前键值小于等于搜索键值,往右走 else x = right(x); iterator j = iterator(y); return (j == end() || key_compare(k, key(j.node))) ? end() : j; } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const Key& k) const { link_type y = header; /* Last node which is not less than k. */ link_type x = root(); /* Current node. */ while (x != 0) { if (!key_compare(key(x), k)) y = x, x = left(x); else x = right(x); } const_iterator j = const_iterator(y); return (j == end() || key_compare(k, key(j.node))) ? end() : j; } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::size_type rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::count(const Key& k) const { pair<const_iterator, const_iterator> p = equal_range(k); size_type n = 0; distance(p.first, p.second, n); return n; } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::lower_bound(const Key& k) { link_type y = header; /* Last node which is not less than k. */ link_type x = root(); /* Current node. */ while (x != 0) if (!key_compare(key(x), k)) y = x, x = left(x); else x = right(x); return iterator(y); } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::lower_bound(const Key& k) const { link_type y = header; /* Last node which is not less than k. */ link_type x = root(); /* Current node. */ while (x != 0) if (!key_compare(key(x), k)) y = x, x = left(x); else x = right(x); return const_iterator(y); } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::upper_bound(const Key& k) { link_type y = header; /* Last node which is greater than k. */ link_type x = root(); /* Current node. */ while (x != 0) if (key_compare(k, key(x))) y = x, x = left(x); else x = right(x); return iterator(y); } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::upper_bound(const Key& k) const { link_type y = header; /* Last node which is greater than k. */ link_type x = root(); /* Current node. */ while (x != 0) if (key_compare(k, key(x))) y = x, x = left(x); else x = right(x); return const_iterator(y); } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> inline pair<typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator, typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator> rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::equal_range(const Key& k) { return pair<iterator, iterator>(lower_bound(k), upper_bound(k)); } template <class Key, class Value, class KoV, class Compare, class Alloc> inline pair<typename rb_tree<Key, Value, KoV, Compare, Alloc>::const_iterator, typename rb_tree<Key, Value, KoV, Compare, Alloc>::const_iterator> rb_tree<Key, Value, KoV, Compare, Alloc>::equal_range(const Key& k) const { return pair<const_iterator,const_iterator>(lower_bound(k), upper_bound(k)); } inline int __black_count(__rb_tree_node_base* node, __rb_tree_node_base* root) { if (node == 0) return 0; else { int bc = node->color == __rb_tree_black ? 1 : 0; if (node == root) return bc; else return bc + __black_count(node->parent, root); } } template <class Key, class Value, class KeyOfValue, class Compare, class Alloc> bool rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::__rb_verify() const { if (node_count == 0 || begin() == end()) return node_count == 0 && begin() == end() && header->left == header && header->right == header; int len = __black_count(leftmost(), root()); for (const_iterator it = begin(); it != end(); ++it) { link_type x = (link_type) it.node; link_type L = left(x); link_type R = right(x); if (x->color == __rb_tree_red) if ((L && L->color == __rb_tree_red) || (R && R->color == __rb_tree_red)) return false; if (L && key_compare(key(x), key(L))) return false; if (R && key_compare(key(R), key(x))) return false; if (!L && !R && __black_count(x, root()) != len) return false; } if (leftmost() != __rb_tree_node_base::minimum(root())) return false; if (rightmost() != __rb_tree_node_base::maximum(root())) return false; return true; } __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_TREE_H */ // Local Variables: // mode:C++ // End:
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。