首页 > 代码库 > 利用bloom filter算法处理大规模数据过滤
利用bloom filter算法处理大规模数据过滤
Bloom Filter是由Bloom在1970年提出的一种快速查找算法,通过多个hash算法来共同判断某个元素是否在某个集合内。可以用于网络爬虫的url重复过滤、垃圾邮件的过滤等等。
它相比hash容器的一个优势就是,不需要存储元素的实际数据到容器中去来一个个的比较是否存在。
只需要对应的位段来标记是否存在就行了,所以想当节省内存,特别适合海量的数据处理。并且由于省去了存储元素和比较操作,所以性能也比基于hash容器的高了很多。
但是由于bloom filter没有去比较元素,只通过多个hash来判断唯一性,所以存在一定的hash冲突导致误判。误判率的大小由hash函数的个数、hash函数优劣、以及存储的位空间大小共同决定。
并且删除也比较困难,解决办法是使用其变种,带计数的bloom filter,这个这里就不多说了。
对于bloom filter算法的实现,相当简单:
首先分配一块固定的连续空间,大小是m个比特位(m/8+1个字节),然后再提供k个不同hash函数,同时对每个元素进行计算位索引。如果每个位索引对应的位都为1,则存在该元素,否则就是不存在。
可以看出,如果判断为不存在,那么肯定是不存在的,只有在判断为存在的时候,才会存在误判。
bloom filter主要的难点其实在于估算:
保证指定误判率的情况下,到底需要多少个hash函数,多少的存储空间。
首先来看下bloom filter的误判率计算公式:
假定有k个hash函数,m个比特位的存储空间,n个集合元素,则有误判率p:
p = (1 - ((1 - 1/ m) ^ kn))^k ~= (1 - e^(-kn/m))^k
根据这个,官方给出了一个计算k的最优解公式,使其满足给定p的情况下,存储空间达到最小:
k = (m / n) * ln2
把它带入概率公式得到:
p = (1 - e ^-((m/nln2)n/m))^(m/nln2)
简化为:
lnp = -m/n * (ln2)^2
因此,如果指定p,只需要满足如果公式,就可以得到最优解:
s = m/n = -lnp / (ln2 * ln2) = -log2(p) / ln2
k = s * ln2 = -log2(p)
理论值:
p < 0.1: k = 3.321928, m/n = 4.79
p < 0.01: k = 6.643856, m/n = 9.58
p < 0.001: k = 9.965784, m/n = 14.37
p < 0.0001: k = 13.287712, m/n = 19.170117
可以看出,这个确实能够在保证误判率的前提下,使其存储空间达到最小,但是使用的hash函数个数k
相对较多,至少也得4个,要满足p < 0.001,需要10个才行,这个对于字符串hash的计算来讲,性能损耗相当大的,实际使用中根本没法接受。
因此我们需要另外一种推到公式,可以认为指定p和k的情况下,来计算空间使用s=m/n的大小,这样我们在实际使用的时候,灵活性就大大提高了。
下面来看下,我自己推到出来的公式,首先还是依据误判率公式:
p = (1 - e^(-kn/m))^k
假定s=m/n,则有
p = (1 - e^(-k/s))^k
两边取导,得到:
lnp = k * ln(1 - e^(-k/s))
交换k:
(lnp) / k = ln(1 - e^(-k/s))
重新上e:
e^((lnp) / k) = 1 - e^(-k/s)
化简:
e^(-k/s) = 1 - e^((lnp) / k) = 1 - (e^lnp)^(1/k) = 1 - p^(1/k)
再求导:
-k/s = ln(1 - p^(1/k))
得出:
s = -k / ln(1 - p^(1/k))
假定`c = p^(1/k)`:
s = -k / ln(1 - c)
利用泰勒展开式:`ln(1 + x) ~= x - 0.5x^2 while x < 1` 化简得到:
s ~= -k / (-c-0.5c^2) = 2k / (2c + c * c)
最后得出公式:
c = p^(1/k)
s = m / n = 2k / (2c + c * c)
假定有n=10000000的数据量,则有理论值:
p < 0.1 and k = 1: s = m/n = 9.523810
p < 0.1 and k = 2: s = m/n = 5.461082
p < 0.1 and k = 3: s = m/n = 5.245850, space ~= 6.3MB
p < 0.1 and k = 4: s = m/n = 5.552045, space ~= 6.6MB
p < 0.01 and k = 1: s = m/n = 99.502488
p < 0.01 and k = 2: s = m/n = 19.047619
p < 0.01 and k = 3: s = m/n = 12.570636, space ~= 15MB
p < 0.01 and k = 4: s = m/n = 10.922165, space ~= 13MB
p < 0.001 and k = 1: s = m/n = 999.500250
p < 0.001 and k = 2: s = m/n = 62.261118
p < 0.001 and k = 3: s = m/n = 28.571429, space ~= 34MB
p < 0.001 and k = 4: s = m/n = 20.656961, space ~= 24.6MB
p < 0.0001 and k = 1: s = m/n = 9999.500025
p < 0.0001 and k = 2: s = m/n = 199.004975
p < 0.0001 and k = 3: s = m/n = 63.167063, space ~= 75.3MB
p < 0.0001 and k = 4: s = m/n = 38.095238, space ~= 45.4MB
p < 0.0001 and k = 5: s = m/n = 29.231432, space ~= 24.8MB
可以看到,在k=3的情况下,其实已经可以达到我们平常使用所能的接受范围内了,没必要非得
使用最优解,除非在空间使用极为苛刻的情况下,而且这个公式,针对程序空间使用的调整,更加的灵活智能。
特别提下,经过实测,如果每个hash的实现非常优质,分布很均匀的情况下,其实际的误判率比理论值低很多:
就拿TBOX的bloom filter的实现做测试,n=10000000:
p < 0.01 and k = 3的情况下,其实际误判率为:0.004965
p < 0.001 and k = 3的情况下,其实际误判率为:0.000967
所以好的hash函数算法也是尤为的重要。
下面来看下TBOX提供的bloom filter的使用,用起来也是相当的方便:
它相比hash容器的一个优势就是,不需要存储元素的实际数据到容器中去来一个个的比较是否存在。
只需要对应的位段来标记是否存在就行了,所以想当节省内存,特别适合海量的数据处理。并且由于省去了存储元素和比较操作,所以性能也比基于hash容器的高了很多。
但是由于bloom filter没有去比较元素,只通过多个hash来判断唯一性,所以存在一定的hash冲突导致误判。误判率的大小由hash函数的个数、hash函数优劣、以及存储的位空间大小共同决定。
并且删除也比较困难,解决办法是使用其变种,带计数的bloom filter,这个这里就不多说了。
对于bloom filter算法的实现,相当简单:
首先分配一块固定的连续空间,大小是m个比特位(m/8+1个字节),然后再提供k个不同hash函数,同时对每个元素进行计算位索引。如果每个位索引对应的位都为1,则存在该元素,否则就是不存在。
可以看出,如果判断为不存在,那么肯定是不存在的,只有在判断为存在的时候,才会存在误判。
bloom filter主要的难点其实在于估算:
保证指定误判率的情况下,到底需要多少个hash函数,多少的存储空间。
首先来看下bloom filter的误判率计算公式:
假定有k个hash函数,m个比特位的存储空间,n个集合元素,则有误判率p:
p = (1 - ((1 - 1/ m) ^ kn))^k ~= (1 - e^(-kn/m))^k
根据这个,官方给出了一个计算k的最优解公式,使其满足给定p的情况下,存储空间达到最小:
k = (m / n) * ln2
把它带入概率公式得到:
p = (1 - e ^-((m/nln2)n/m))^(m/nln2)
简化为:
lnp = -m/n * (ln2)^2
因此,如果指定p,只需要满足如果公式,就可以得到最优解:
s = m/n = -lnp / (ln2 * ln2) = -log2(p) / ln2
k = s * ln2 = -log2(p)
理论值:
p < 0.1: k = 3.321928, m/n = 4.79
p < 0.01: k = 6.643856, m/n = 9.58
p < 0.001: k = 9.965784, m/n = 14.37
p < 0.0001: k = 13.287712, m/n = 19.170117
可以看出,这个确实能够在保证误判率的前提下,使其存储空间达到最小,但是使用的hash函数个数k
相对较多,至少也得4个,要满足p < 0.001,需要10个才行,这个对于字符串hash的计算来讲,性能损耗相当大的,实际使用中根本没法接受。
因此我们需要另外一种推到公式,可以认为指定p和k的情况下,来计算空间使用s=m/n的大小,这样我们在实际使用的时候,灵活性就大大提高了。
下面来看下,我自己推到出来的公式,首先还是依据误判率公式:
p = (1 - e^(-kn/m))^k
假定s=m/n,则有
p = (1 - e^(-k/s))^k
两边取导,得到:
lnp = k * ln(1 - e^(-k/s))
交换k:
(lnp) / k = ln(1 - e^(-k/s))
重新上e:
e^((lnp) / k) = 1 - e^(-k/s)
化简:
e^(-k/s) = 1 - e^((lnp) / k) = 1 - (e^lnp)^(1/k) = 1 - p^(1/k)
再求导:
-k/s = ln(1 - p^(1/k))
得出:
s = -k / ln(1 - p^(1/k))
假定`c = p^(1/k)`:
s = -k / ln(1 - c)
利用泰勒展开式:`ln(1 + x) ~= x - 0.5x^2 while x < 1` 化简得到:
s ~= -k / (-c-0.5c^2) = 2k / (2c + c * c)
最后得出公式:
c = p^(1/k)
s = m / n = 2k / (2c + c * c)
假定有n=10000000的数据量,则有理论值:
p < 0.1 and k = 1: s = m/n = 9.523810
p < 0.1 and k = 2: s = m/n = 5.461082
p < 0.1 and k = 3: s = m/n = 5.245850, space ~= 6.3MB
p < 0.1 and k = 4: s = m/n = 5.552045, space ~= 6.6MB
p < 0.01 and k = 1: s = m/n = 99.502488
p < 0.01 and k = 2: s = m/n = 19.047619
p < 0.01 and k = 3: s = m/n = 12.570636, space ~= 15MB
p < 0.01 and k = 4: s = m/n = 10.922165, space ~= 13MB
p < 0.001 and k = 1: s = m/n = 999.500250
p < 0.001 and k = 2: s = m/n = 62.261118
p < 0.001 and k = 3: s = m/n = 28.571429, space ~= 34MB
p < 0.001 and k = 4: s = m/n = 20.656961, space ~= 24.6MB
p < 0.0001 and k = 1: s = m/n = 9999.500025
p < 0.0001 and k = 2: s = m/n = 199.004975
p < 0.0001 and k = 3: s = m/n = 63.167063, space ~= 75.3MB
p < 0.0001 and k = 4: s = m/n = 38.095238, space ~= 45.4MB
p < 0.0001 and k = 5: s = m/n = 29.231432, space ~= 24.8MB
可以看到,在k=3的情况下,其实已经可以达到我们平常使用所能的接受范围内了,没必要非得
使用最优解,除非在空间使用极为苛刻的情况下,而且这个公式,针对程序空间使用的调整,更加的灵活智能。
特别提下,经过实测,如果每个hash的实现非常优质,分布很均匀的情况下,其实际的误判率比理论值低很多:
就拿TBOX的bloom filter的实现做测试,n=10000000:
p < 0.01 and k = 3的情况下,其实际误判率为:0.004965
p < 0.001 and k = 3的情况下,其实际误判率为:0.000967
所以好的hash函数算法也是尤为的重要。
下面来看下TBOX提供的bloom filter的使用,用起来也是相当的方便:
// 总的元素个数 tb_size_t count = 10000000; /* 初始化bloom filter * * TB_BLOOM_FILTER_PROBABILITY_0_01: 预定义的误判率,接近0.01 * 注:由于内部使用位移数来表示:1 / 2^6 = 0.015625 ~= 0.01 * 所以实际传入的误判率,有可能稍微大一点,但是还是相当接近的 * * 3:为k值,hash函数的个数,最大不超过15个 * * count:指定的元素规模数 * * tb_item_func_long():容器的元素类型,主要是用其内定的hash函数,如果要自定义hash函数,可以替换: * * tb_size_t tb_xxxxxx_hash(tb_item_func_t* func, tb_cpointer_t data, tb_size_t mask, tb_size_t index) * { * // mask为hash掩码,index为第index个hash算法的索引 * return compute_hash(data, index) & mask; * } * * tb_item_func_t func = tb_item_func_long(); * func.hash = tb_xxxxxx_hash; * * 来进行 */ tb_bloom_filter_ref_t filter = tb_bloom_filter_init(TB_BLOOM_FILTER_PROBABILITY_0_01, 3, count, tb_item_func_long()); if (filter) { tb_size_t i = 0; for (i = 0; i < count; i++) { // 产生随机数 tb_long_t value = http://www.mamicode.com/tb_random();>
----------
TBOX项目详情:http://www.oschina.net/p/tbox
TBOX项目源码:https://github.com/waruqi/tbox
TBOX项目文档:https://github.com/waruqi/tbox/wiki/%E7%9B%AE%E5%BD%95
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。