首页 > 代码库 > 最小费用最大流

最小费用最大流

解释:每次在s-t之间找出费用最小的一条路径即单源最短路,如果t点不再被访问到,则算法终止。否则,按着最短路径找出最小剩余容量c,最大流量加上c,再更新最短路径上的边,前向弧减去c,反向弧加上c,并且造一条逆向的费用边,最小费用加上每条边的花销,每条边的花销=单位费用*c。

最小费用最大流既能求最小费用,又能得出最大流,是更为一般的模型。

模板:

#define maxn 20005
struct
{
    int v,w,c,next,re;
    //re记录逆边的下标,c是费用,w是流量
} e[maxn];
int n,m,cnt;
int head[maxn],que[maxn], pre[maxn], dis[maxn];
bool vis[maxn];
void addEdge(int u, int v, int w, int c)
{
    e[cnt].v=v,e[cnt].w=w,e[cnt].c=c;
    e[cnt].next=head[u];
    e[cnt].re=cnt+1,head[u]=cnt++;
    e[cnt].v=u,e[cnt].w=0,e[cnt].c=-c;
    e[cnt].next=head[v];
    e[cnt].re=cnt-1,head[v]=cnt++;
}
bool spfa()
{
    int i, l = 0, r = 1;
    for(i = 0; i <= n; i ++)
        dis[i] = INF,vis[i] = false;
    dis[0]=0,que[0]=0,vis[0]=true;
    while(l<r)
    {
        int u = que[l ++];
        for(i=head[u];i!=-1;i=e[i].next)
        {
            int v = e[i].v;
            if(e[i].w&&dis[v]>dis[u]+e[i].c)
            {
                dis[v] = dis[u] + e[i].c;
                pre[v] = i;
                if(!vis[v])
                {
                    vis[v] = true;
                    que[r ++] = v;
                }
            }
        }
        vis[u] = false;
    }
    if(dis[n] == INF) return false;
    return true;
}
int change()
{
    int i, p,sum=INF,ans=0;
    for(i=n;i!=0;i=e[e[p].re].v)
    {
        p=pre[i];
        sum=min(sum,e[p].w);
    }
    for(i=n;i!=0;i=e[e[p].re].v)
    {
        p=pre[i];
        e[p].w-=sum;
        e[e[p].re].w+=sum;
        ans+=sum*e[p].c;//c记录的为单位流量费用,必须得乘以流量。
    }
    return ans;
}
int dinic()
{
    int sum=0;
    while(spfa()) sum+=change();
    return sum;
}


最小费用最大流