首页 > 代码库 > HDU 4372 Count the Buildings(组合数学-斯特林数,组合数学-排列组合)

HDU 4372 Count the Buildings(组合数学-斯特林数,组合数学-排列组合)

Count the Buildings


Problem Description
There are N buildings standing in a straight line in the City, numbered from 1 to N. The heights of all the buildings are distinct and between 1 and N. You can see F buildings when you standing in front of the first building and looking forward, and B buildings when you are behind the last building and looking backward. A building can be seen if the building is higher than any building between you and it.
Now, given N, F, B, your task is to figure out how many ways all the buildings can be.
 

Input
First line of the input is a single integer T (T<=100000), indicating there are T test cases followed.
Next T lines, each line consists of three integer N, F, B, (0<N, F, B<=2000) described above.
 

Output
For each case, you should output the number of ways mod 1000000007(1e9+7).
 

Sample Input
2 3 2 2 3 2 1
 

Sample Output
2 1
 

Source
2012 Multi-University Training Contest 8
 

Recommend
zhuyuanchen520   |   We have carefully selected several similar problems for you:  4059 2819 1730 2176 1850 
 


题目大意:

n个高度为1~n的房子排成一排,从前面看可以看到f个房子,从后面看可以看到b个房子,问你有多少种安排方法?


解题思路:

最高的房子为中间,左边有f-1个房子可以看到,右边有b-1个房子,也就是总共选出f+b-2个房子,剩余的房子在它的左边或右边,可以理解为分成了f+b-2组,且含有这个指定的顺序,看成第一类斯特林数,再从f+b-2组里面选出f-1组,答案就是:c[f+b-2][f-1]*s(n-1,f+b-2)

补充斯特林数

第一类Stirling数 s(p,k)
    
s(p,k)的一个的组合学解释是:将p个物体排成k个非空循环排列的方法数。
 
s(p,k)的递推公式: s(p,k)=(p-1)*s(p-1,k)+s(p-1,k-1) ,1<=k<=p-1
边界条件:s(p,0)=0 ,p>=1  s(p,p)=1  ,p>=0


递推关系的说明:
考虑第p个物品,p可以单独构成一个非空循环排列,这样前p-1种物品构成k-1个非空循环排列,方法数为s(p-1,k-1);
也可以前p-1种物品构成k个非空循环排列,而第p个物品插入第i个物品的左边,这有(p-1)*s(p-1,k)种方法。
 
 
第二类Stirling数 S(p,k)
   
S(p,k)的一个组合学解释是:将p个物体划分成k个非空的不可辨别的(可以理解为盒子没有编号)集合的方法数。
k!S(p,k)是把p个人分进k间有差别(如:被标有房号)的房间(无空房)的方法数。
   
S(p,k)的递推公式是:S(p,k)=k*S(p-1,k)+S(p-1,k-1) ,1<= k<=p-1
边界条件:S(p,p)=1 ,p>=0    S(p,0)=0 ,p>=1
  
递推关系的说明:
考虑第p个物品,p可以单独构成一个非空集合,此时前p-1个物品构成k-1个非空的不可辨别的集合,方法数为S(p-1,k-1);
也可以前p-1种物品构成k个非空的不可辨别的集合,第p个物品放入任意一个中,这样有k*S(p-1,k)种方法。
  
第一类斯特林数和第二类斯特林数有相同的初始条件,但递推关系不同。

解题代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;

typedef long long ll;
const ll mod=1000000007;
const int maxn=2100;

ll c[maxn][maxn],s[maxn][maxn];

//c[f+b-2][f-1]*s(n-1,f+b-2)

void ini(){
    for(int i=0;i<maxn;i++){
        c[i][0]=c[i][i]=1;
        for(int j=1;j<i;j++)
            c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
    }
    for(int i=0;i<maxn;i++){
        s[i][0]=0;
        s[i][i]=1;
        for(int j=1;j<i;j++){
            s[i][j]=(s[i-1][j-1]+(i-1)*s[i-1][j])%mod;
        }
    }
}

int n,f,b;

int main(){
    ini();
    int T;
    scanf("%d",&T);
    while(T-- >0){
        scanf("%d%d%d",&n,&f,&b);
        ll ans;
        if(f+b-2<maxn) ans=( c[f+b-2][f-1]*s[n-1][f+b-2] )%mod;
        else ans=0;
        cout<<ans<<endl;
    }
    return 0;
}




HDU 4372 Count the Buildings(组合数学-斯特林数,组合数学-排列组合)