首页 > 代码库 > leetcode 之 Symmetric Tree 镜像树
leetcode 之 Symmetric Tree 镜像树
Symmetric Tree
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / 2 2 / \ / 3 4 4 3
But the following is not:
1 / 2 2 \ 3 3
递归解法:由于对称性,每次把一个节点的左子树和它兄弟节点的左子树进行比较,然后递归处理即可。
struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; class Solution { public: bool isSymmetricRecursive(TreeNode* root1,TreeNode* root2) { if(root1 == NULL && root2 == NULL)return true; if(root1 == NULL || root2 == NULL)return false; return (root1->val == root2->val) && isSymmetricRecursive(root1->left,root2->right) && isSymmetricRecursive(root1->right,root2->left); } bool isSymmetric(TreeNode *root) { if(root == NULL)return true; return isSymmetricRecursive(root->left,root->right); } };
迭代方法:思路和递归一样,此处使用两个队列进行处理,把左子树的孩子放入第一个队列,右子树的放入第二个队列,每次取队首元素进行判断,速度比递归快了几倍
struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; class Solution { public: bool isSymmetric(TreeNode *root) {//判断镜像树和生成镜像树不同 if(!root || !root->left && !root->right)return true; queue<TreeNode*> leftQueue,rightQueue; leftQueue.push(root->left); rightQueue.push(root->right); while(leftQueue.size() > 0 && rightQueue.size() > 0) { TreeNode* pNode1 = leftQueue.front(); leftQueue.pop(); TreeNode* pNode2 = rightQueue.front(); rightQueue.pop(); if(!pNode1 && !pNode2)continue;//都为空 if(!pNode1 || !pNode2)return false;//只有一个为空 if(pNode1->val != pNode2->val)return false;//都不为空 leftQueue.push(pNode1->left),leftQueue.push(pNode1->right);//第一个队列先进左子树 rightQueue.push(pNode2->right),rightQueue.push(pNode2->left);//第二个队列先进右子树 } if(leftQueue.size() > 0 || rightQueue.size() > 0)return false; return true; } };
剑指offer之镜像树
题目:输入一颗二元查找树,将该树转换为它的镜像,即在转换后的二元查找树中,左子树的结点都大于右子树的结点。用递归和循环两种方法完成树的镜像转换。
分析:这里是转换为镜像树,思路和上面的判断类似,每次分别处理左右子树,可以使用递归,也可以使用迭代。此处和判断不同的地方在于,判断必须定位到每个节点的镜像节点的位置,而转换由于不需要一步转换完成,所以每个节点之需要和相邻节点进行交换,相对还比较简单一点。对于迭代,可以使用队列,也可以使用堆栈,具体代码如下:
struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; void SymmetricTreeRecursive(TreeNode* root)//递归,注意和上面判断镜像树的区别 { if(!root)return; TreeNode* tmp = root -> left; root -> left = root->right; root->right = tmp; SymmetricTreeRecursive(root->left); SymmetricTreeRecursive(root->right); } void SymmetricTreeIterative(TreeNode* root)//迭代 { if(!root)return; stack<TreeNode*> s; s.push(root); while(!s.empty()) { TreeNode* pCur = s.top(); s.pop(); TreeNode* tmp = pCur->left; pCur->left = pCur->right; pCur->right = tmp; if(pCur->left)s.push(pCur->left); if(pCur->right)s.push(pCur->right); } }
Same Tree
Given two binary trees, write a function to check if they are equal or not.
Two binary trees are considered equal if they are structurally identical and the nodes have the same value.
递归解法
struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; class Solution { public: bool isSameTree(TreeNode *p, TreeNode *q) { if(p == NULL && q == NULL)return true; if(p == NULL || q == NULL)return false; if(p->val == q->val)return isSameTree(p->left,q->left) && isSameTree(p->right,q->right); else return false; } };
迭代解法(和上面类似),比递归算法高了7倍
struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; class Solution { public: bool isSameTree(TreeNode *p, TreeNode *q) { if(!p && !q)return true; if(!p || !q)return false; queue<TreeNode*> queue1,queue2; queue1.push(p),queue2.push(q); while(queue1.size()>0 && queue2.size()>0) { TreeNode* pNode1 = queue1.front(),*pNode2 = queue2.front(); queue1.pop(),queue2.pop(); if(!pNode1 && !pNode2)continue; if(!pNode1 || !pNode2)return false; if(pNode1->val != pNode2->val)return false; queue1.push(pNode1->left),queue1.push(pNode1->right); queue2.push(pNode2->left),queue2.push(pNode2->right);//由于是判断相同树,所以进队顺序相同 } if(queue1.size()>0 || queue2.size()>0)return false; return true; } };
leetcode 之 Symmetric Tree 镜像树
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。