首页 > 代码库 > 【codeforces 696B】 Puzzles

【codeforces 696B】 Puzzles

http://codeforces.com/problemset/problem/696/B (题目链接)

题意

  给出一棵树,随机dfs遍历这棵树,求解每个节点的期望dfs序。

Solution

  考虑对于节点u,其某个儿子节点v的期望是多少。

  首先,节点u的儿子的dfs的顺序是其儿子数son[x]的全排列。考虑在排列中有多少个节点在v的前面,不妨设x排在v的前面,那么满足的排列数为:${P_n^{n-2}}$,于是x对v的期望的贡献为:$${\frac{P_n^{n-2}×size[x]} {P_n^n}=2×size[x]}$$

  因为节点u的每一个节点都会对v产生贡献,再算上v自己的贡献,所以v的期望:

$${f_v=\frac{size_u-1-size[v]}{2}+1+f[u]}$$

代码

// codeforces696B#include<algorithm>#include<iostream>#include<cstdlib>#include<cstring>#include<cstdio>#include<cmath>#define LL long long#define inf 1<<30#define Pi acos(-1.0)#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);using namespace std;const int maxn=100010;struct edge {int to,next;}e[maxn<<1];int head[maxn],size[maxn],n,cnt;double f[maxn];void link(int u,int v) {	e[++cnt]=(edge){v,head[u]};head[u]=cnt;}void dfs(int x) {	size[x]=1;	for (int i=head[x];i;i=e[i].next) {			dfs(e[i].to);			size[x]+=size[e[i].to];		}}void dp(int x) {	for (int i=head[x];i;i=e[i].next) {		f[e[i].to]=(double)(size[x]-1-size[e[i].to])/2+1+f[x];		dp(e[i].to);	}}int main() {	scanf("%d",&n);	for (int x,i=2;i<=n;i++) {		scanf("%d",&x);		link(x,i);	}	dfs(1);	f[1]=1;dp(1);	for (int i=1;i<=n;i++) printf("%.6lf ",f[i]);	return 0;}

 

【codeforces 696B】 Puzzles