首页 > 代码库 > Elasticsearch+Hbase实现海量数据秒回查询
Elasticsearch+Hbase实现海量数据秒回查询
[版权申明:本文系作者原创,转载请注明出处]
文章出处:http://blog.csdn.net/sdksdk0/article/details/53966430
作者:朱培 ID:sdksdk0
--------------------------------------------------------------------------------------------
首先祝大家2017新年快乐,我今天分享的是通过ElasticSearch与hbase进行整合的一个搜索案例,这个案例涉及的技术面比较广,首先你得有JAVAEE的基础,要会SSM,而且还要会大数据中的hdfs、zookeeper、hbase以及ElasticSearch和kibana。环境部署在4台centos7上。主机名为node1-node4。这里假设你已经安装好了zookeeper、hadoop、hbase和ElasticSearch还有kibana,我这里使用的是hadoop2.5.2,ElasticSearch用的你是2.2,kibana是4.4.1。我这里的环境是 hadoop是4台在node1-node4, zookeeper是3台再node1-node3,,ElasticSearch是3台在node1-node3,kibana是一台在node1上。该系统可以对亿万数据查询进行秒回,是一般的关系型数据库很难做到的。在IntelliJ IDEA 中进行代码编写。环境搭建我这里就不啰嗦,相信大家作为一名由经验的开发人员来说都是小事一桩。文末提供源码下载链接。
一、ElasticSearch和Hbase
ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。 Elasticsearch的性能是solr的50倍。
HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩、
实时读写的分布式数据库
– 利用Hadoop HDFS作为其文件存储系统,利用Hadoop MapReduce来处理
HBase中的海量数据,利用Zookeeper作为其分布式协同服务
– 主要用来存储非结构化和半结构化的松散数据(列存 NoSQL 数据库)
二、需求分析&服务器环境设置
主要是做一个文章的搜索。有文章标题、作者、摘要、内容四个主要信息。效果图如下:这里样式我就没怎么设置了。。。。想要好看一点的可以自己加css。
服务器:
在3台centos7中部署,主机名为node1-node3.安装好ElasticSearch并配置好集群,
1. 解压
2. 修改config/elasticsearch.yml (注意要顶格写,冒号后面要加一个空格)
a) Cluster.name: tf (同一集群要一样)
b) Node.name: node-1 (同一集群要不一样)
c) Network.Host: 192.168.44.137 这里不能写127.0.0.1
3. 解压安装kibana
4. 再congfig目录下的kibana.yml中修改elasticsearch.url
5. 安装插件
Step 1: Install Marvel into Elasticsearch: | bin/plugin install license |
Step 2: Install Marvel into Kibana | bin/kibana plugin --install elasticsearch/marvel/latest |
Step 3: Start Elasticsearch and Kibana | bin/elasticsearch |
启动好elasticsearch集群后,
然后启动zookeeper、hdfs、hbase。zkService.sh start 、start-all.sh、start-hbase.sh。接下来就是剩下编码步骤了。
三、编码开发
1、首先在IntelliJ IDEA中新建一个maven工程,加入如下依赖。
<dependencies> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>4.9</version> </dependency> <!-- spring 3.2 --> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-context</artifactId> <version>3.2.0.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-orm</artifactId> <version>3.2.0.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-aspects</artifactId> <version>3.2.0.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-web</artifactId> <version>3.2.0.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-webmvc</artifactId> <version>3.2.0.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-test</artifactId> <version>3.2.0.RELEASE</version> </dependency> <!-- JSTL --> <dependency> <groupId>jstl</groupId> <artifactId>jstl</artifactId> <version>1.2</version> </dependency> <dependency> <groupId>taglibs</groupId> <artifactId>standard</artifactId> <version>1.1.2</version> </dependency> <!-- slf4j --> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-api</artifactId> <version>1.7.10</version> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> <version>1.7.10</version> </dependency> <!-- elasticsearch --> <dependency> <groupId>org.elasticsearch</groupId> <artifactId>elasticsearch</artifactId> <version>2.2.0</version> </dependency> <!-- habse --> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-client</artifactId> <version>1.1.3</version> <exclusions> <exclusion> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> </exclusion> </exclusions> </dependency> </dependencies>
2、Dao层
private Integer id; private String title; private String describe; private String content; private String author;
实现其getter/setter方法。
3、数据准备
在桌面新建一个doc1.txt文档,用于把我们需要查询的数据写入到里面,这里我只准备了5条数据。中间用tab键隔开。
4、在hbase中建立表。表名师doc,列族是cf。
public static void main(String[] args) throws Exception { HbaseUtils hbase = new HbaseUtils(); //创建一张表}hbase.createTable("doc","cf");
/** * 创建一张表 * @param tableName * @param column * @throws Exception */ public void createTable(String tableName, String column) throws Exception { if(admin.tableExists(TableName.valueOf(tableName))){ System.out.println(tableName+"表已经存在!"); }else{ HTableDescriptor tableDesc = new HTableDescriptor(TableName.valueOf(tableName)); tableDesc.addFamily(new HColumnDescriptor(column.getBytes())); admin.createTable(tableDesc); System.out.println(tableName+"表创建成功!"); } }
5、导入索引。这一步的时候确保你的hdfs和hbase以及elasticsearch是处于开启状态。
@Test public void createIndex() throws Exception { List<Doc> arrayList = new ArrayList<Doc>(); File file = new File("C:\\Users\\asus\\Desktop\\doc1.txt"); List<String> list = FileUtils.readLines(file,"UTF8"); for(String line : list){ Doc Doc = new Doc(); String[] split = line.split("\t"); System.out.print(split[0]); int parseInt = Integer.parseInt(split[0].trim()); Doc.setId(parseInt); Doc.setTitle(split[1]); Doc.setAuthor(split[2]); Doc.setDescribe(split[3]); Doc.setContent(split[3]); arrayList.add(Doc); } HbaseUtils hbaseUtils = new HbaseUtils(); for (Doc Doc : arrayList) { try { //把数据插入hbase hbaseUtils.put(hbaseUtils.TABLE_NAME, Doc.getId()+"", hbaseUtils.COLUMNFAMILY_1, hbaseUtils.COLUMNFAMILY_1_TITLE, Doc.getTitle()); hbaseUtils.put(hbaseUtils.TABLE_NAME, Doc.getId()+"", hbaseUtils.COLUMNFAMILY_1, hbaseUtils.COLUMNFAMILY_1_AUTHOR, Doc.getAuthor()); hbaseUtils.put(hbaseUtils.TABLE_NAME, Doc.getId()+"", hbaseUtils.COLUMNFAMILY_1, hbaseUtils.COLUMNFAMILY_1_DESCRIBE, Doc.getDescribe()); hbaseUtils.put(hbaseUtils.TABLE_NAME, Doc.getId()+"", hbaseUtils.COLUMNFAMILY_1, hbaseUtils.COLUMNFAMILY_1_CONTENT, Doc.getContent()); //把数据插入es Esutil.addIndex("tfjt","doc", Doc); } catch (Exception e) { e.printStackTrace(); } } }
数据导入成功之后可以在服务器上通过命令查看一下:
curl -XGET http://node1:9200/tfjt/_search
7、搜索。
在这里新建了一个工具类Esutil.java,主要用于处理搜索的。注意,我们默认的elasticsearch是9200端口的,这里数据传输用的是9300,不要写成9200了,然后就是集群名字为tf,也就是前面配置的集群名。还有就是主机名node1-node3,这里不能写ip地址,如果是本地测试的话,你需要在你的window下面配置hosts文件。
public class Esutil { public static Client client = null; /** * 获取客户端 * @return */ public static Client getClient() { if(client!=null){ return client; } Settings settings = Settings.settingsBuilder().put("cluster.name", "tf").build(); try { client = TransportClient.builder().settings(settings).build() .addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("node1"), 9300)) .addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("node2"), 9300)) .addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("node3"), 9300)); } catch (UnknownHostException e) { e.printStackTrace(); } return client; } public static String addIndex(String index,String type,Doc Doc){ HashMap<String, Object> hashMap = new HashMap<String, Object>(); hashMap.put("id", Doc.getId()); hashMap.put("title", Doc.getTitle()); hashMap.put("describe", Doc.getDescribe()); hashMap.put("author", Doc.getAuthor()); IndexResponse response = getClient().prepareIndex(index, type).setSource(hashMap).execute().actionGet(); return response.getId(); } public static Map<String, Object> search(String key,String index,String type,int start,int row){ SearchRequestBuilder builder = getClient().prepareSearch(index); builder.setTypes(type); builder.setFrom(start); builder.setSize(row); //设置高亮字段名称 builder.addHighlightedField("title"); builder.addHighlightedField("describe"); //设置高亮前缀 builder.setHighlighterPreTags("<font color=‘red‘ >"); //设置高亮后缀 builder.setHighlighterPostTags("</font>"); builder.setSearchType(SearchType.DFS_QUERY_THEN_FETCH); if(StringUtils.isNotBlank(key)){ // builder.setQuery(QueryBuilders.termQuery("title",key)); builder.setQuery(QueryBuilders.multiMatchQuery(key, "title","describe")); } builder.setExplain(true); SearchResponse searchResponse = builder.get(); SearchHits hits = searchResponse.getHits(); long total = hits.getTotalHits(); Map<String, Object> map = new HashMap<String,Object>(); SearchHit[] hits2 = hits.getHits(); map.put("count", total); List<Map<String, Object>> list = new ArrayList<Map<String, Object>>(); for (SearchHit searchHit : hits2) { Map<String, HighlightField> highlightFields = searchHit.getHighlightFields(); HighlightField highlightField = highlightFields.get("title"); Map<String, Object> source = searchHit.getSource(); if(highlightField!=null){ Text[] fragments = highlightField.fragments(); String name = ""; for (Text text : fragments) { name+=text; } source.put("title", name); } HighlightField highlightField2 = highlightFields.get("describe"); if(highlightField2!=null){ Text[] fragments = highlightField2.fragments(); String describe = ""; for (Text text : fragments) { describe+=text; } source.put("describe", describe); } list.add(source); } map.put("dataList", list); return map; } // public static void main(String[] args) { // Map<String, Object> search = Esutil.search("hbase", "tfjt", "doc", 0, 10); // List<Map<String, Object>> list = (List<Map<String, Object>>) search.get("dataList"); // } }
8、使用spring控制层处理
在里面的spring配置这里就不说了,代码文末提供。
@RequestMapping("/search.do") public String serachArticle(Model model, @RequestParam(value=http://www.mamicode.com/"keyWords",required = false) String keyWords,>9、页面
<center> <form action="search.do" method="get"> <input type="text" name="keyWords" /> <input type="submit" value=http://www.mamicode.com/"百度一下">>10、项目发布
在IntelliJ IDEA 中配置好常用的项目,这里发布名Application context名字为es,当然你也可以自定义设置。
最终效果如下:搜索COS会得到结果,速度非常快。
总结:这个案例的操作流程还是挺多的,要有细心和耐心,特别是服务器配置,各种版本要匹配好,不然会出各种头疼的问题,当然了,这个还是需要有一定基础,不然搞不定这个事情。。。。。
源码地址:https://github.com/sdksdk0/es
Elasticsearch+Hbase实现海量数据秒回查询