首页 > 代码库 > poj 1679 The Unique MST (判断最小生成树是否唯一)
poj 1679 The Unique MST (判断最小生成树是否唯一)
The Unique MST
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 20679 | Accepted: 7255 |
Description
Given a connected undirected graph, tell if its minimum spanning tree is unique.
Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V‘, E‘), with the following properties:
1. V‘ = V.
2. T is connected and acyclic.
Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E‘) of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E‘.
Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V‘, E‘), with the following properties:
1. V‘ = V.
2. T is connected and acyclic.
Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E‘) of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E‘.
Input
The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.
Output
For each input, if the MST is unique, print the total cost of it, or otherwise print the string ‘Not Unique!‘.
Sample Input
2 3 3 1 2 1 2 3 2 3 1 3 4 4 1 2 2 2 3 2 3 4 2 4 1 2
Sample Output
3 Not Unique!
Source
POJ Monthly--2004.06.27 srbga@POJ
判断最小生成树是否唯一:
1、对图中每条边,扫描其它边,如果存在相同权值的边,则标记该边。
2、用kruskal或prim求出MST。
3、如果MST中无标记的边,则MST唯一;否则,在MST中依次去掉标记的边,再求MST,若求得MST权值和原来的MST 权值相同,则MST不唯一。
#include"stdio.h" #include"string.h" #include"iostream" #include"algorithm" using namespace std; #define N 105 const int inf=0x7fffffff; struct node { int u,v,w; int eq,used,del; }e[N*N]; int n,first,m; int pre[N]; bool cmp(node a,node b) { return a.w<b.w; } int find(int x) { if(x!=pre[x]) pre[x]=find(pre[x]); return pre[x]; } int kruskal() { int i,f1,f2,ans,cnt; ans=cnt=0; for(i=1;i<=n;i++) pre[i]=i; for(i=0;i<m;i++) { if(e[i].del) continue; f1=find(e[i].u); f2=find(e[i].v); if(f1!=f2) { if(first) e[i].used=1; pre[f1]=f2; ans+=e[i].w; cnt++; if(cnt>=n-1) break; } } return ans; } int main() { int i,j,T; scanf("%d",&T); while(T--) { scanf("%d%d",&n,&m); for(i=0;i<m;i++) { scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w); e[i].del=e[i].eq=e[i].used=0; } sort(e,e+m,cmp); for(i=0;i<m;i++) { for(j=i+1;j<m;j++) { if(e[i].w==e[j].w) { e[i].eq=e[j].eq=1; } else break; } } first=1; int ans=kruskal(); first=0; for(i=0;i<m;i++) { if(e[i].used&&e[i].eq) { e[i].del=1; if(kruskal()==ans) break; e[i].del=0; } } if(i<m) printf("Not Unique!\n"); else printf("%d\n",ans); } return 0; }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。