首页 > 代码库 > poj 3185 The Water Bowls(高斯消元)
poj 3185 The Water Bowls(高斯消元)
The Water Bowls
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 4352 | Accepted: 1721 |
Description
The cows have a line of 20 water bowls from which they drink. The bowls can be either right-side-up (properly oriented to serve refreshing cool water) or upside-down (a position which holds no water). They want all 20 water bowls to be right-side-up and thus use their wide snouts to flip bowls.
Their snouts, though, are so wide that they flip not only one bowl but also the bowls on either side of that bowl (a total of three or -- in the case of either end bowl -- two bowls).
Given the initial state of the bowls (1=undrinkable, 0=drinkable -- it even looks like a bowl), what is the minimum number of bowl flips necessary to turn all the bowls right-side-up?
Their snouts, though, are so wide that they flip not only one bowl but also the bowls on either side of that bowl (a total of three or -- in the case of either end bowl -- two bowls).
Given the initial state of the bowls (1=undrinkable, 0=drinkable -- it even looks like a bowl), what is the minimum number of bowl flips necessary to turn all the bowls right-side-up?
Input
Line 1: A single line with 20 space-separated integers
Output
Line 1: The minimum number of bowl flips necessary to flip all the bowls right-side-up (i.e., to 0). For the inputs given, it will always be possible to find some combination of flips that will manipulate the bowls to 20 0‘s.
Sample Input
0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0
Sample Output
3
Hint
Explanation of the sample:
Flip bowls 4, 9, and 11 to make them all drinkable:
0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [initial state]
0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 4]
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 9]
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [after flipping bowl 11]
Flip bowls 4, 9, and 11 to make them all drinkable:
0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [initial state]
0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 4]
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 9]
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [after flipping bowl 11]
Source
USACO 2006 January Bronze
高斯消元的简单题:
#include <iostream> #include <cstdio> #include <cmath> #include <cstring> using namespace std; int a[24][24],x[24]; int equ,var;//方程数和变元数 void Debug() { for(int i=0;i<equ;i++) { for(int j=0;j<=var;j++) printf("%d ",a[i][j]); puts(""); } puts(""); } int gauss() { int max_r,col=0; for(int i=0;i<equ&&col<var;i++,col++) { max_r=i; for(int j=i+1;j<equ;j++) { if(a[j][col]>a[max_r][col]) max_r=j; } if(max_r!=i) { for(int k=0;k<=var;k++) { swap(a[i][k],a[max_r][k]); } } if(a[i][col]==0) { i--; continue; } for(int j=i+1;j<equ;j++) if(i!=j&&a[j][col]) { for(int k=col;k<=var;k++) a[j][k]=a[i][k]^a[j][k]; } } //Debug(); for(int i=equ-1;i<equ;i++) if(a[i][var]) return -1; int ans=100,sum=0; for(int k=0;k<=1;k++) { x[equ-1]=(k&1)>0?1:0; sum=0; for(int i=equ-2;i>=0;i--) { int temp=a[i][var]; for(int j=i+1;j<var;j++) { temp-=a[i][j]*x[j]; } x[i]=temp/a[i][i]; } for(int i=0;i<var;i++) if(x[i]%2!=0) { sum++; } //printf(" sum:%d\n",sum); ans=min(ans,sum); } return ans; } void init() { memset(a,0,sizeof(a)); memset(x,0,sizeof(x)); for(int i=0;i<20;i++) { if(i!=0) a[i][i-1]=1; if(i!=19) a[i][i+1]=1; a[i][i]=1; } //Debug(); } int main() { equ=var=20; int t; while(scanf("%d",&t)!=EOF) { init(); a[0][var]=t; for(int i=1;i<=19;i++) { scanf("%d",&a[i][var]); } int ans=gauss(); printf("%d\n",ans); } return 0; }
poj 3185 The Water Bowls(高斯消元)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。