首页 > 代码库 > 地铁换乘
地铁换乘
题目简介:
描述:已知2条地铁线路,其中A为环线,B为东西向线路,线路都是双向的。经过的站点名分别如下,两条线交叉的换乘点用T1、T2表示。编写程序,任意输入两个站点名称,输出乘坐地铁最少需要经过的车站数量(含输入的起点和终点,换乘站点只计算一次)。
地铁线A(环线)经过车站:A1 A2 A3 A4 A5 A6 A7 A8 A9 T1 A10 A11 A12 A13 T2 A14 A15 A16 A17 A18
地铁线B(直线)经过车站:B1 B2 B3 B4 B5 T1 B6 B7 B8 B9 B10 T2 B11 B12 B13 B14 B15
输入:输入两个不同的站名
输出:输出最少经过的站数,含输入的起点和终点,换乘站点只计算一次
输入样例:A1 A3
输出样例:3
这种鬼题刚开始看的时候没什么头绪,看上去就像是要用数据结构来做。不过个人数据结构又不是很好
所以搞了很久才搞出来
这题有挺多方法解决的:可以穷举,可以用Dijkstra算法,可以用Floyd算法...
我是用Dijkstra算法做的:
首先生成相对应的图:用矩阵表示(也可以用链表(可能相对复杂些))
然后用Dijkstra算法计算
1 2 3 #include<stdio.h> 4 #include<string.h> 5 #include<string> 6 #include<iostream> 7 using namespace std; 8 typedef struct Tree{ //表示图的数据结构 9 int weight[36][36]; //权值 10 int mark[36]; //是否访问标记 11 int result[36]; //某站到所有站的最短距离(结果存储) 12 }Tree; 13 14 void init(Tree &train) //生成相对应的图,初始化 15 { 16 int i,j; 17 for (i=1; i <= 36; i++) 18 for (j=1; j<= 36; j++) 19 if (i == j) 20 train.weight[i][j] = 0; 21 else 22 train.weight[i][j] = 65535; 23 // A路线 24 for (i=1; i <= 8; i++){ 25 train.weight[i][i+1] = 1; 26 train.weight[i+1][i] = 1; 27 } 28 for (i=10; i <= 12; i++){ 29 train.weight[i][i+1] = 1; 30 train.weight[i+1][i] = 1; 31 } 32 for (i=14; i <= 17; i++){ 33 train.weight[i][i+1] = 1; 34 train.weight[i+1][i] = 1; 35 } 36 train.weight[18][1] = 1; 37 train.weight[1][18] = 1; 38 // B路线 39 for (i=19; i <= 22; i++){ 40 train.weight[i][i+1] = 1; 41 train.weight[i+1][i] = 1; 42 } 43 for (i=24; i <= 27; i++){ 44 train.weight[i][i+1] = 1; 45 train.weight[i+1][i] = 1; 46 } 47 for (i=29; i <= 32; i++){ 48 train.weight[i][i+1] = 1; 49 train.weight[i+1][i] = 1; 50 } 51 //T1 T2 52 train.weight[34][9] = 1; 53 train.weight[9][34] = 1; 54 train.weight[34][10] = 1; 55 train.weight[10][34] = 1; 56 train.weight[34][23] = 1; 57 train.weight[23][34] = 1; 58 train.weight[34][24] = 1; 59 train.weight[24][34] = 1; 60 train.weight[35][13] = 1; 61 train.weight[13][35] = 1; 62 train.weight[35][14] = 1; 63 train.weight[14][35] = 1; 64 train.weight[35][28] = 1; 65 train.weight[28][35] = 1; 66 train.weight[35][29] = 1; 67 train.weight[29][35] = 1; 68 for (i=1; i <= 36; i++) 69 train.mark[i] = 0; 70 } 71 72 //Dijkstra算法计算最短路径 73 int foo(int a, int b, Tree train) 74 { 75 int i,j,mi,m,k; 76 for (i=1; i <= 36; i++){ 77 train.result[i] = train.weight[a][i]; 78 //printf("%d ",train.result[i]); 79 } 80 //printf("\n"); 81 train.mark[a] = 1; 82 for (i=1; i <= 36; i++) 83 { 84 mi = 65535; 85 for (j=1; j <= 36; j++){ //搜寻当前未访问的最短路径(作为下一访问点) 86 if (!train.mark[j] && train.result[j] < mi) 87 { 88 m = j; 89 mi = train.result[j]; 90 } 91 } 92 for (k=1; k <= 36; k++){ //比较(经过当前访问点的距离)与之前最短路径的距离 93 if (train.result[m] + train.weight[m][k] < train.result[k]) 94 train.result[k] = train.result[m] + train.weight[m][k]; //比之前的则更新 95 } 96 train.mark[m] = 1; 97 98 } 99 for (i=1; i <= 35; i++){ //结果输出100 printf("%4d ",train.result[i]);101 }102 printf("\n");103 return train.result[b]+1;104 }105 106 int main()107 {108 string abt[] = {"A1", "A2", "A3", "A4", "A5", "A6", "A7", "A8", "A9", "A10", "A11", "A12", "A13", "A14", "A15", "A16", "A17", "A18",109 "B1", "B2", "B3", "B4", "B5","B6", "B7", "B8", "B9", "B10", "B11", "B12", "B13", "B14", "B15", "T1", "T2"};110 char s1[10],s2[10];111 int a,b,i;112 Tree train;113 init(train);114 scanf("%s%s",s1,s2);115 for (i=0; i < 36; i++)116 {117 if (strcmp(s1,abt[i].c_str()) == 0)118 a = i;119 if (strcmp(s2,abt[i].c_str()) == 0)120 b = i;121 }122 printf("%d %d\n",a+1,b+1);123 printf("到相对应站的距离:\n");124 for (i=1; i <= 35; i++){125 printf("%4s ",abt[i-1].c_str());126 }127 printf("\n");128 printf("\n最后结果:%d\n",foo(a+1,b+1,train));129 130 }131
地铁换乘
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。