首页 > 代码库 > 模式识别开发之项目---身份证上面的数字识别
模式识别开发之项目---身份证上面的数字识别
using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Text;
using System.Collections;
using System.Drawing;
using System.Drawing.Imaging;
using System.Runtime.InteropServices;
namespace ReadNum_DividedByZeros_
{
class CBitmap
{
/**/
/// <summary>
/// 生成缩略图
/// </summary>
/// <param name="originalImagePath">源图路径(物理路径)</param>
/// <param name="width">缩略图宽度</param>
/// <param name="height">缩略图高度</param>
public static Bitmap MakeThumbnail(string originalImagePath, int width, int height, int potx, int poty)
{
System.Drawing.Image originalImage = System.Drawing.Image.FromFile(originalImagePath);
int towidth = width;
int toheight = height;
int x = potx;
int y = poty;
int ow = width;
int oh = height;
System.Drawing.Bitmap bitmap = new System.Drawing.Bitmap(towidth, toheight); //Image=>Bitmap
//新建一个画板
System.Drawing.Graphics g = System.Drawing.Graphics.FromImage(bitmap);
//设置高质量插值法
g.InterpolationMode = System.Drawing.Drawing2D.InterpolationMode.High;
//设置高质量,低速度呈现平滑程度
g.SmoothingMode = System.Drawing.Drawing2D.SmoothingMode.HighQuality;
//清空画布并以透明背景色填充
g.Clear(Color.Transparent);
//在指定位置并且按指定大小绘制原图片的指定部分
g.DrawImage(originalImage, new Rectangle(0, 0, towidth, toheight), new Rectangle(x, y, ow, oh), GraphicsUnit.Pixel);
return bitmap; // creative class Bitmap is here _Jiana
}
}
/// <summary>
/// /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// </summary>
class UnCodebase
{
public Bitmap bmpobj;
public UnCodebase(Bitmap pic)
{
bmpobj = new Bitmap(pic); //转换为Format32bppRgb
}
/**/
/// <summary>
/// 根据RGB,计算灰度值
/// </summary>
/// <param name="posClr">Color值</param>
/// <returns>灰度值,整型</returns>
private int GetGrayNumColor(System.Drawing.Color posClr)
{
return (posClr.R * 19595 + posClr.G * 38469 + posClr.B * 7472) >> 16;
}
/**/
/// <summary>
/// 灰度转换,逐点方式
/// </summary>
public void GrayByPixels()
{
for (int i = 0; i < bmpobj.Height; i++)
{
for (int j = 0; j < bmpobj.Width; j++)
{
int tmpValue = http://www.mamicode.com/GetGrayNumColor(bmpobj.GetPixel(j, i));
bmpobj.SetPixel(j, i, Color.FromArgb(tmpValue, tmpValue, tmpValue));
}
}
}
/**/
/// <summary>
/// 去图形边框
/// </summary>
/// <param name="borderWidth"></param>
public void ClearPicBorder(int borderWidth)
{
for (int i = 0; i < bmpobj.Height; i++)
{
for (int j = 0; j < bmpobj.Width; j++)
{
if (i < borderWidth || j < borderWidth || j > bmpobj.Width - 1 - borderWidth || i > bmpobj.Height - 1 - borderWidth)
bmpobj.SetPixel(j, i, Color.FromArgb(255, 255, 255));
}
}
}
/**/
/// <summary>
/// 灰度转换,逐行方式
/// </summary>
public void GrayByLine()
{
Rectangle rec = new Rectangle(0, 0, bmpobj.Width, bmpobj.Height);
BitmapData bmpData = http://www.mamicode.com/bmpobj.LockBits(rec, ImageLockMode.ReadWrite, bmpobj.PixelFormat);// PixelFormat.Format32bppPArgb);
// bmpData.PixelFormat = PixelFormat.Format24bppRgb;
IntPtr scan0 = bmpData.Scan0;
int len = bmpobj.Width * bmpobj.Height;
int[] pixels = new int[len];
Marshal.Copy(scan0, pixels, 0, len);
//对图片进行处理
int GrayValue = http://www.mamicode.com/0;
for (int i = 0; i < len; i++)
{
GrayValue = http://www.mamicode.com/GetGrayNumColor(Color.FromArgb(pixels[i]));
pixels[i] = (byte)(Color.FromArgb(GrayValue, GrayValue, GrayValue)).ToArgb(); //Color转byte
}
bmpobj.UnlockBits(bmpData);
}
/**/
/// <summary>
/// 得到有效图形并调整为可平均分割的大小
/// </summary>
/// <param name="dgGrayValue">灰度背景分界值</param>
/// <param name="CharsCount">有效字符数</param>
/// <returns></returns>
public void GetPicValidByValue(int dgGrayValue, int CharsCount)
{
int posx1 = bmpobj.Width; int posy1 = bmpobj.Height;
int posx2 = 0; int posy2 = 0;
for (int i = 0; i < bmpobj.Height; i++) //找有效区
{
for (int j = 0; j < bmpobj.Width; j++)
{
int pixelValue = http://www.mamicode.com/bmpobj.GetPixel(j, i).R;
if (pixelValue < dgGrayValue) //根据灰度值
{
if (posx1 > j) posx1 = j;
if (posy1 > i) posy1 = i;
if (posx2 < j) posx2 = j;
if (posy2 < i) posy2 = i;
};
};
};
// 确保能整除
int Span = CharsCount - (posx2 - posx1 + 1) % CharsCount; //可整除的差额数
if (Span < CharsCount)
{
int leftSpan = Span / 2; //分配到左边的空列 ,如span为单数,则右边比左边大1
if (posx1 > leftSpan)
posx1 = posx1 - leftSpan;
if (posx2 + Span - leftSpan < bmpobj.Width)
posx2 = posx2 + Span - leftSpan;
}
//复制新图
Rectangle cloneRect = new Rectangle(posx1, posy1, posx2 - posx1 + 1, posy2 - posy1 + 1);
bmpobj = bmpobj.Clone(cloneRect, bmpobj.PixelFormat);
}
/**/
/// <summary>
/// 得到有效图形,图形为类变量
/// </summary>
/// <param name="dgGrayValue">灰度背景分界值</param>
/// <param name="CharsCount">有效字符数</param>
/// <returns></returns>
public void GetPicValidByValue(int dgGrayValue)
{
int posx1 = bmpobj.Width; int posy1 = bmpobj.Height;
int posx2 = 0; int posy2 = 0;
for (int i = 0; i < bmpobj.Height; i++) //找有效区
{
for (int j = 0; j < bmpobj.Width; j++)
{
int pixelValue = http://www.mamicode.com/bmpobj.GetPixel(j, i).R;
if (pixelValue < dgGrayValue) //根据灰度值
{
if (posx1 > j) posx1 = j;
if (posy1 > i) posy1 = i;
if (posx2 < j) posx2 = j;
if (posy2 < i) posy2 = i;
};
};
};
//复制新图
Rectangle cloneRect = new Rectangle(posx1, posy1, posx2 - posx1 + 1, posy2 - posy1 + 1);
bmpobj = bmpobj.Clone(cloneRect, bmpobj.PixelFormat);
}
/**/
/// <summary>
/// 得到有效图形,图形由外面传入
/// </summary>
/// <param name="dgGrayValue">灰度背景分界值</param>
/// <param name="CharsCount">有效字符数</param>
/// <returns></returns>
public Bitmap GetPicValidByValue(Bitmap singlepic, int dgGrayValue)
{
int posx1 = singlepic.Width; int posy1 = singlepic.Height;
int posx2 = 0; int posy2 = 0;
for (int i = 0; i < singlepic.Height; i++) //找有效区
{
for (int j = 0; j < singlepic.Width; j++)
{
int pixelValue = http://www.mamicode.com/singlepic.GetPixel(j, i).R;
if (pixelValue < dgGrayValue) //根据灰度值
{
if (posx1 > j) posx1 = j;
if (posy1 > i) posy1 = i;
if (posx2 < j) posx2 = j;
if (posy2 < i) posy2 = i;
};
};
};
//复制新图
Rectangle cloneRect = new Rectangle(posx1, posy1, posx2 - posx1 + 1, posy2 - posy1 + 1);
return singlepic.Clone(cloneRect, singlepic.PixelFormat);
}
/**/
/// <summary>
/// 平均分割图片
/// </summary>
/// <param name="RowNum">水平上分割数</param>
/// <param name="ColNum">垂直上分割数</param>
/// <returns>分割好的图片数组</returns>
public Bitmap[] GetSplitPics(int RowNum, int ColNum)
{
if (RowNum == 0 || ColNum == 0)
return null;
int singW = bmpobj.Width / RowNum;
int singH = bmpobj.Height / ColNum;
Bitmap[] PicArray = new Bitmap[RowNum * ColNum];
Rectangle cloneRect;
for (int i = 0; i < ColNum; i++) //找有效区
{
for (int j = 0; j < RowNum; j++)
{
cloneRect = new Rectangle(j * singW, i * singH, singW, singH);
PicArray[i * RowNum + j] = bmpobj.Clone(cloneRect, bmpobj.PixelFormat);//复制小块图
}
}
return PicArray;
}
/**/
/// <summary>
/// 返回灰度图片的点阵描述字串,1表示灰点,0表示背景
/// </summary>
/// <param name="singlepic">灰度图</param>
/// <param name="dgGrayValue">背前景灰色界限</param>
/// <returns></returns>
public string GetSingleBmpCode(Bitmap singlepic, int dgGrayValue)
{
Color piexl;
string code = "";
for (int posx = 0; posx < singlepic.Width; posx++)
for (int posy = 0; posy < singlepic.Height; posy++)
{
piexl = singlepic.GetPixel(posx, posy);
if (piexl.R < dgGrayValue) // Color.Black )
code = code + "1";
else
code = code + "0";
}
return code;
}
/* The function is used to divide picture by analysing zeros of pixel _Jiana */
public string[] dividePic(string picPixel, int zerosLength)
{
string zeros = "";
for (int i = 0; i < zerosLength; i++)
{
zeros+=‘0‘;
}
string[] array = System.Text.RegularExpressions.Regex.Split(picPixel, zeros);
return array;
}
/* The function is used to analyze the pixel‘s codes and conver them to number _Jiana*/
public string analyzePixelC(string[] code,int drow)
{
long[] sum = new long[drow];
for (int i = 0; i < drow; i++)
{
for (int j = 0; j < code[i].Length; j++)
{
char num = code[i][j];
int a = (int)num - 48;
sum[i] += a;
}
}
char[] result = new char[drow];
for (int i = 0; i < drow; i++)
{
// Judge the number _Jiana
if (sum[i] >= 63 && sum[i] <= 69) { sum[i] = 66; } // 0
if (sum[i] >= 36 && sum[i] <= 38) { sum[i] = 37; } // 1
if (sum[i] >= 56 && sum[i] <= 58) { sum[i] = 57; } // 2
if (sum[i] >= 57 && sum[i] <= 59) { sum[i] = 58; } // 3
if (sum[i] >= 43 && sum[i] <= 45) { sum[i] = 44; } // 4
if (sum[i] >= 49 && sum[i] <= 51) { sum[i] = 50; } // 5
if (sum[i] >= 58 && sum[i] <= 60) { sum[i] = 59; } // 6
if (sum[i] >= 44 && sum[i] <= 46) { sum[i] = 45; } // 7
if (sum[i] >= 72 && sum[i] <= 78) { sum[i] = 75; } // 8
if (sum[i] >= 63 && sum[i] <= 65) { sum[i] = 64; } // 9
}
for (int i = 0; i < drow; i++)
{
switch (sum[i])
{
case 66: result[i] = ‘0‘; break;
case 37: result[i] = ‘1‘; break;
case 57: result[i] = ‘2‘; break;
case 58: result[i] = ‘3‘; break;
case 44: result[i] = ‘4‘; break;
case 50: result[i] = ‘5‘; break;
case 59: result[i] = ‘6‘; break;
case 45: result[i] = ‘7‘; break;
case 75: result[i] = ‘8‘; break;
case 64: result[i] = ‘9‘; break;
default: result[i] = ‘ ‘; break;
}
}
string returnResult = "";
for (int i = 0; i < drow; i++)
{
returnResult += result[i];
}
return returnResult;
}
}
static class Program
{
/// <summary>
/// 应用程序的主入口点。
/// </summary>
[STAThread]
static void Main()
{
//Application.EnableVisualStyles();
//Application.SetCompatibleTextRenderingDefault(false);
//Application.Run(new Form1());
Bitmap mBitmap = CBitmap.MakeThumbnail("E://license2.jpg", 250, 22, 163, 242);
UnCodebase rgb = new UnCodebase(mBitmap);
rgb.GrayByPixels();
int drow = 1, dcol = 1;
Bitmap[] pics = rgb.GetSplitPics(drow, dcol);
string[] code = new string[drow];
for (int i = 0; i < drow; i++)
{
code[i] = rgb.GetSingleBmpCode(pics[i], 128);
}
// test: divide by zeros _Jiana
string piecePic = "";
int lastOne = 0;
int flag1=0;
for (int i = code[0].Length-1; i > 0; i--)
{
if (code[0][i] != ‘0‘ && flag1 == 0)
{
flag1 = 1;
lastOne = i;
}
}
int flag2 = 0;
for (int i = 0; i < lastOne; i++)
{
if (code[0][i] != ‘0‘ && flag2 == 0)
{
flag2 = 1;
}
if (flag2 == 1)
{
piecePic += code[0][i];
}
}
string[] div = rgb.dividePic(piecePic, 98);
string number = rgb.analyzePixelC(div, 18);
System.Console.WriteLine("");
}
}
}
http://blog.csdn.net/liulina603/article/details/7945544
模式识别开发之项目---身份证上面的数字识别