首页 > 代码库 > hdu 3501 容斥原理或欧拉函数

hdu 3501 容斥原理或欧拉函数

Calculation 2

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2181    Accepted Submission(s): 920


Problem Description
Given a positive integer N, your task is to calculate the sum of the positive integers less than N which are not coprime to N. A is said to be coprime to B if A, B share no common positive divisors except 1.
 

 

Input
For each test case, there is a line containing a positive integer N(1 ≤ N ≤ 1000000000). A line containing a single 0 follows the last test case.
 

 

Output
For each test case, you should print the sum module 1000000007 in a line.
 

 

Sample Input
340
 

 

Sample Output
02
 

 

Author
GTmac
 

 

Source
2010 ACM-ICPC Multi-University Training Contest(7)——Host by HIT
 
题目大意:给一个数n求1到n-1之间与它不互质的数之和mod(1000000007)。
解题思路:我首先想到的是把n质因数分解成n=a1^p1*a2^p2....*an^pn的形式,那么把与他含有共同因子的数之和算出来,这里面有重复的,所以用容斥原理计算。
一个数的欧拉函数phi(n),根据gcd(n,i)==1,gcd(n,n-i)==1,所以与n互质的数都是成对出现的(他们的和等于n)。
 
 1 //欧拉函数 2 #include <stdio.h> 3 #include <math.h> 4  5 typedef __int64 LL; 6 const int Mod=1000000007; 7  8 LL euler_phi(LL n) 9 {10     LL m=(LL)sqrt(n*1.0);11     LL ans=n;12     for(int i=2;i<=m;i++) if(n%i==0)13     {14         ans=ans/i*(i-1);15         while(n%i==0) n/=i;16     }17     if(n>1) ans=ans/n*(n-1);18     return ans;19 }20 21 int main()22 {23     LL n;24     while(~scanf("%I64d",&n),n)25     {26         LL phi=euler_phi(n);27         LL t1=(n*phi/2)%Mod;28         LL t2=(n*(n+1)/2-n)%Mod;29         LL ans=(t2-t1+Mod)%Mod;30         printf("%I64d\n",ans);31     }32     return 0;33 }

 

 1 //容斥原理 2 #include <stdio.h> 3 #include <string.h> 4 #include <math.h> 5  6 typedef __int64 LL; 7 const int Mod=1000000007; 8 const int maxn=100000; 9 bool flag[maxn];10 int prime[maxn],num,n;11 int factor[100],cnt;12 bool vis[100];13 LL ans,temp;14 15 void get_prime()16 {17     num=0;memset(flag,true,sizeof(flag));18     for(int i=2;i<maxn;i++)19     {20         if(flag[i]) prime[num++]=i;21         for(int j=0;j<num&&prime[j]*i<maxn;j++)22         {23             flag[i*prime[j]]=false;24             if(i%prime[j]==0) break;25         }26     }27 }28 29 void get_factor()30 {31     cnt=0;32     int i,top=(int)sqrt(n*1.0),t=n;33     for(i=0;i<num && prime[i]<=top;i++)34     {35         if(t%prime[i]==0)36         {37             factor[cnt++]=prime[i];38             while(t%prime[i]==0)39                 t/=prime[i];40         }41     }42     if(t>1) factor[cnt++]=t;43 }44 45 void dfs(int now,int top,int start,LL s)46 {47     if(now==top)48     {49         LL t=(n-1)/s;50         LL a=((t+1)*t/2)%Mod;51         LL b=(a*s)%Mod;52         temp=(temp+b)%Mod;53         return ;54     }55     for(int j=start;j<cnt;j++)56     {57         if(!vis[j])58         {59             vis[j]=true;60             dfs(now+1,top,j+1,s*factor[j]);61             vis[j]=false;62         }63     }64     return ;65 }66 67 void solve()68 {69     ans=0;70     int c=1;71     for(int i=1;i<=cnt;i++)72     {73         memset(vis,false,sizeof(vis));74         temp=0;dfs(0,i,0,1);75         ans=(((ans+c*temp)%Mod)+Mod)%Mod;76         c=-c;77     }78 }79 80 int main()81 {82     get_prime();83     while(scanf("%d",&n),n)84     {85         get_factor();86         solve();87         printf("%I64d\n",ans);88     }89     return 0;90 }

hdu 3501 容斥原理或欧拉函数