首页 > 代码库 > HDU 1695 GCD 欧拉函数+容斥定理

HDU 1695 GCD 欧拉函数+容斥定理

输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1

由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和1到d/k 2个区间 如果第一个区间小于第二个区间 讲第二个区间分成2部分来做1-b/k 和 b/k+1-d/k

第一部分对于每一个数i 和他互质的数就是这个数的欧拉函数值 全部数的欧拉函数的和就是答案

第二部分能够用全部数减去不互质的数 对于一个数i 分解因子和他不互质的数包括他的若干个因子 这个用容斥原理 奇加偶减

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef __int64 LL;
const int maxn = 100010;
LL phi[maxn];
LL sum[maxn], p[maxn][33];
void phi_table(int n)
{
	memset(sum, 0, sizeof(sum));
	memset(phi, 0, sizeof(phi));
	phi[1] = 1;
	for(int i = 2; i <= n; i++)
	{
		if(!phi[i])
			for(int j = i; j <= n; j += i)
		 	{
		 		if(!phi[j])
				 	phi[j] = j; 
			 	phi[j] = phi[j] / i * (i-1);
			 	p[j][sum[j]++] = i;
		 	}
	 	phi[i] += phi[i-1];
	}
}

void dfs(int id, LL num, LL cnt, int a, LL& ans, int x)
{
	if(id == sum[x])
	{
		if(cnt == 0)
			return;
		if(cnt&1)
			ans += a/num;
		else
			ans -= a/num;
		return;
	}
	dfs(id+1, num*p[x][id], cnt+1, a, ans, x);
	dfs(id+1, num, cnt, a, ans, x);
}
LL cal(int x, int a)
{
	LL ans = 0;
	dfs(0, 1, 0, a, ans, x);
	return ans;
}
int main()
{
	phi_table(100000);
	int cas = 1;
	int T;
	scanf("%d", &T);
	while(T--)
	{
		int a, b, k;
		scanf("%d %d %d %d %d", &a, &a, &b, &b, &k);
		if(!k)
		{
			printf("Case %d: %d\n", cas++, 0);
			continue;
		}
		if(a > b)
			swap(a, b);
		a /= k;
		b /= k;
		LL ans = phi[a];
		for(int i = a+1; i <= b; i++)
			ans += a-cal(i, a);
		printf("Case %d: %I64d\n", cas++, ans);
	}
	return 0;
}


HDU 1695 GCD 欧拉函数+容斥定理