首页 > 代码库 > HDU 2588 GCD (欧拉函数)
HDU 2588 GCD (欧拉函数)
GCD
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1013 Accepted Submission(s): 457
Total Submission(s): 1013 Accepted Submission(s): 457
Problem Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
Output
For each test case,output the answer on a single line.
Sample Input
3 1 1 10 2 10000 72
Sample Output
1 6 260
Source
ECJTU 2009 Spring Contest
Recommend
lcy | We have carefully selected several similar problems for you: 1695 1787 3501 2824 2582
模板题目,新手对数论理解有限,求指导。
模板题目,新手对数论理解有限,求指导。
题意:
分析:假设x<=n,n=p*d,x=q*d.假设n与x的最大公约数为d,则能够推出p与q肯定是互质的,因为x<=n所以要求的就是p的欧拉函数值了,那么我们就转化成求满足:n=p*d,并且d>=m的p的欧拉函数值之和了。
代码实现:
#include <cstring> #include <cstdio> int OL(int n) //大白书上的求一个数的欧拉函数模板。 { int res=n,i,j; for(i=2;i*i<=n;i++) { if(n%i==0) { // n/=i; while(!(n%i)) n/=i; res=res/i*(i-1); } } if(n!=1) res=res/n*(n-1); return res; } int main() { int n,i,j,m,sum,T; while(scanf("%d",&T)!=EOF) { while(T--) { sum=0; scanf("%d%d",&n,&m); for(i=1;i*i<=n;i++) if(n%i==0) { if(i>=m) sum+=OL(n/i); if((n/i)!=i && (n/i)>=m) sum+=OL(i); } printf("%d\n",sum); } } return 0; }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。