首页 > 代码库 > HDU1211 RSA
HDU1211 RSA
RSA
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1415 Accepted Submission(s): 1017
Problem Description
RSA is one of the most powerful methods to encrypt data. The RSA algorithm is described as follow:
> choose two large prime integer p, q
> calculate n = p × q, calculate F(n) = (p - 1) × (q - 1)
> choose an integer e(1 < e < F(n)), making gcd(e, F(n)) = 1, e will be the public key
> calculate d, making d × e mod F(n) = 1 mod F(n), and d will be the private key
You can encrypt data with this method :
C = E(m) = me mod n
When you want to decrypt data, use this method :
M = D(c) = cd mod n
Here, c is an integer ASCII value of a letter of cryptograph and m is an integer ASCII value of a letter of plain text.
Now given p, q, e and some cryptograph, your task is to "translate" the cryptograph into plain text.
> choose two large prime integer p, q
> calculate n = p × q, calculate F(n) = (p - 1) × (q - 1)
> choose an integer e(1 < e < F(n)), making gcd(e, F(n)) = 1, e will be the public key
> calculate d, making d × e mod F(n) = 1 mod F(n), and d will be the private key
You can encrypt data with this method :
C = E(m) = me mod n
When you want to decrypt data, use this method :
M = D(c) = cd mod n
Here, c is an integer ASCII value of a letter of cryptograph and m is an integer ASCII value of a letter of plain text.
Now given p, q, e and some cryptograph, your task is to "translate" the cryptograph into plain text.
Input
Each case will begin with four integers p, q, e, l followed by a line of cryptograph. The integers p, q, e, l will be in the range of 32-bit integer. The cryptograph consists of l integers separated by blanks.
Output
For each case, output the plain text in a single line. You may assume that the correct result of plain text are visual ASCII letters, you should output them as visualable letters with no blank between them.
Sample Input
101 103 7 11 7716 7746 7497 126 8486 4708 7746 623 7298 7357 3239
Sample Output
I-LOVE-ACM.
1和l傻傻分不清。
//hdu1211 #include <stdio.h> typedef __int64 lld; lld f(lld c, lld d, lld n) { if(d == 0) return 1 % n; if(d == 1) return c % n; lld tmp = f(c, d >> 1, n); tmp = tmp * tmp % n; if(d & 1) tmp = tmp * c % n; return tmp; } int main() { lld p, q, e, l, c, n, fn, d, i; char ch; while(scanf("%I64d%I64d%I64d%I64d", &p, &q, &e, &l) != EOF){ n = p * q; fn = (p - 1) * (q - 1); for(i = 1; ; ++i) if(i * e % fn == 1) break; d = i; while(l--){ scanf("%I64d", &c); printf("%c", f(c, d, n)); } printf("\n"); } return 0; }
HDU1211 RSA
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。