首页 > 代码库 > 重定位与链接脚本
重定位与链接脚本
1.为什么需要重定位
位置无关编码(PIC,position independent code):汇编源文件被编码成二进制可执行程序时编码方式与位置(内存地址)无关。
位置有关编码:汇编源码编码成二进制可执行程序后和内存地址是有关的。
我们在设计一个程序时,会给这个程序指定一个运行地址(链接地址)。就是说我们在编译程序时其实心里是知道我们程序将来被运行时的地址(运行地址)的,而且必须给编译器链接器指定这个地址(链接地址)才行。最后得到的二进制程序理论上是和你指定的运行地址有关的,将来这个程序被执行时必须放在当时编译链接时给定的那个地址(链接地址)下才行,否则不能运行(就叫位置有关代码)。但是有个别特别的指令他可以跟指定的地址(链接地址)没有关系,也就是说这些代码实际运行时不管放在哪里都能正常运行。
对于位置有关代码来说:最终执行时的运行地址和编译链接时给定的链接地址必须相同,否则一定出错。
之前的裸机程序中,Makefile中用 -Ttext 0x0 来指定链接地址是0x0。这意味着我们认为这个程序将来会放在0x0这个内存地址去运行。
但是实际上我们运行时的地址是0xd0020010(我们用dnw下载时指定的下载地址)。这两个地址看似不同,但是实际相同。这是因为S5PV210内部做了映射,把SRAM映射到了0x0地址去。
分清楚这两个概念:
链接地址:链接时指定的地址(指定方式为:Makefile中用-Ttext,或者链接脚本)
运行地址:程序实际运行时地址(指定方式:由实际运行时被加载到内存的哪个位置说了算)
2.再解S5PV210的启动过程:三星推荐和uboot的实现是不同的
三星推荐的启动方式中:bootloader必须小于96KB并大于16KB,假定bootloader为80KB,启动过程是这样子:先开机上电后BL0运行,BL0会加载外部启动设备中的bootloader的前16KB(BL1)到SRAM中去运行,BL1运行时会加载BL2(bootloader中80-16=64KB)到SRAM中(从SRAM的16KB处开始用)去运行;BL2运行时会初始化DDR并且将OS搬运到DDR去执行OS,启动完成。
uboot实际使用的方式:uboot大小随意,假定为200KB。启动过程是这样子:先开机上电后BL0运行,BL0会加载外部启动设备中的uboot的前16KB(BL1)到SRAM中去运行,BL1运行时会初始化DDR,然后将整个uboot搬运到DDR中,然后用一句长跳转(从SRAM跳转到DDR)指令从SRAM中直接跳转到DDR中继续执行uboot直到uboot完全启动。uboot启动后在uboot命令行中去启动OS。
链接地址和运行地址有时候必须不相同,而且还不能全部用位置无关码,这时候只能重定位。
扩展:
分散加载:把uboot分成2部分(BL1和整个uboot),两部分分别指定不同的链接地址。启动时将两部分加载到不同的地址(BL1加载到SRAM,整个uboot加载到DDR),这时候不用重定位也能启动。
评价:分散加载其实相当于手工重定位。重定位是用代码来进行重定位,分散加载是手工操作重定位的。
3.对比操作系统下的程序与裸机程序
linux中的应用程序。gcc hello.c -o hello,这时使用默认的链接地址就是0x0,所以应用程序都是链接在0地址的。因为应用程序运行在操作系统的一个进程中,在这个进程中这个应用程序独享4G的虚拟地址空间。所以应用程序都可以链接到0地址,因为每个进程都是从0地址开始的。(编译时可以不给定链接地址而都使用0)
210中的裸机程序。运行地址由我们下载时确定,下载时下载到0xd0020010,所以就从这里开始运行。(这个下载地址也不是我们随意定的,是iROM中的BL0加载BL1时事先指定好的地址,这是由CPU的设计决定的)。所以理论上我们编译链接时应该将地址指定到0xd0020010,但是实际上我们在之前裸机程序中都是使用位置无关码PIC,所以链接地址可以是0。
4.关于链接
从源码到可执行程序的步骤:预编译、编译、链接、strip
预编译:预编译器执行。譬如C中的宏定义就是由预编译器处理,注释等也是由预编译器处理的。
编译: 编译器来执行。把源码.c .S编程机器码.o文件。
链接: 链接器来执行。把.o文件中的各函数(段)按照一定规则(链接脚本来指定)累积在一起,
形成可执行文件。
strip: strip是把可执行程序中的符号信息给拿掉,以节省空间。(Debug版本和Release版本)
objcopy:由可执行程序生成可烧录的镜像bin文件。
程序段的概念:代码段、数据段、bss段(ZI段)、自定义段
段就是程序的一部分,我们把整个程序的所有东西分成了一个一个的段,给每个段起个名字,然后在链接时就可以用这个名字来指示这些段。也就是说给段命名就是为了在链接脚本中用段名来让段站在核实的位置。
段名分为2种:一种是编译器链接器内部定好的,先天性的名字;一种是程序员自己指定的、自定义的段名。
先天性段名:
代码段:(.text),又叫文本段,代码段其实就是函数编译后生成的东西
数据段:(.data),数据段就是C语言中有显式初始化为非0的全局变量
bss段:(.bss),又叫ZI(zero initial)段,就是零初始化段,对应C语言中初始化为0的全局变量。
后天性段名:
5、链接脚本究竟要做什么?
链接脚本其实是个规则文件,他是程序员用来指挥链接器工作的。链接器会参考链接脚本,并且使用其中规定的规则来处理.o文件中那些段,将其链接成一个可执行程序。
链接脚本的关键内容有2部分:段名 + 地址(作为链接地址的内存地址)
链接脚本的理解:
SECTIONS {} 这个是整个链接脚本
. 点号在链接脚本中代表当前位置。
= 等号代表赋值
6.代码重定位实战(理论分析)
任务:在SRAM中将代码从0xd0020010重定位到0xd0024000
任务解释:本来代码是运行在0xd0020010的,但是因为一些原因我们又希望代码实际是在0xd0024000位置运行的。这时候就需要重定位了。
注解:本练习对代码本身运行无实际意义,我们做这个重定位纯粹是为了练习重定位技能。但是某些情况重定位就是必须的,譬如在uboot中。
思路:
第一点:通过链接脚本将代码链接到0xd0024000
第二点:dnw下载时将bin文件下载到0xd0020010
第一点加上第二点,就保证了:代码实际下载运行在0xd0020010,但是却被链接在0xd0024000。从而为重定位奠定了基础。
当我们把代码链接地址设置为0xd0024000时,实际隐含意思就是我这个代码将来必须放在0xd0024000位置才能正确执行。如果实际运行地址不是这个地址就要出事(除非代码是PIC位置无关码),当以上都明白了后,就知道重定位代码的作用就是:在PIC执行完之前(在代码中第一句位置有关码执行之前)必须将整个代码搬移到0xd0024000位置去执行,这就是重定位。
第三点:代码执行时通过代码前段的少量位置无关码将整个代码搬移到0xd0024000
第四点:使用一个长跳转跳转到0xd0024000处的代码继续执行,重定位完成
总结:
重定位实际就是在运行地址处执行一段位置无关码PIC,让这段PIC(也就是重定位代码)从运行地址处把整个程序镜像拷贝一份到链接地址处,
完了之后使用一句长跳转指令从运行地址处直接跳转到链接地址处去执行同一个函数(led_blink),这样就实现了重定位之后的无缝连接。
7.代码重定位实战(代码)
adr与ldr伪指令的区别
ldr和adr都是伪指令,区别是ldr是长加载、adr是短加载。
重点:adr指令加载符号地址,加载的是运行时地址;ldr指令在加载符号地址时,加载的是链接地址。
第一步:重定位(代码拷贝)
重定位就是汇编代码中的copy_loop函数,代码的作用是使用循环结构来逐句复制代码到链接地址。
复制的源地址是SRAM的0xd0020010,复制目标地址是SRAM的0xd0024000,复制长度是bss_start减去_start
所以复制的长度就是整个重定位需要重定位的长度,也就是整个程序中代码段+数据段的长度。
bss段(bss段中就是0初始化的全局变量)不需要重定位。
第二步:清bss段
清除bss段是为了满足C语言的运行时要求(C语言要求显式初始化为0的全局变量,或者未显式初始化的全局变量的值为0,实际上C语言编译器就是通过清bss段来实现C语言的这个特性的)。一般情况下我们的程序是不需要负责清零bss段的(C语言编译器和链接器会帮我们的程序自动添加一段头程序,这段程序会在我们的main函数之前运行,这段代码就负责清除bss)。但是在我们代码重定位了之后,因为编译器帮我们附加的代码只是帮我们清除了运行地址那一份代码中的bss,而未清除重定位地址处开头的那一份代码的bss,所以重定位之后需要自己去清除bss。
第三步:长跳转
清理完bss段后重定位就结束了。然后当前的状况是:
1、当前运行地址还在0xd0020010开头的(重定位前的)那一份代码中运行着。
2、此时SRAM中已经有了2份代码,1份在d0020010开头,另一份在d0024000开头的位置。
然后就要长跳转了。
/* * 文件名: led.s * 作者: 朱老师 * 描述: 演示重定位(在SRAM内部重定位) */ #define WTCON 0xE2700000 #define SVC_STACK 0xd0037d80 .global _start // 把_start链接属性改为外部,这样其他文件就可以看见_start了 _start: // 第1步:关看门狗(向WTCON的bit5写入0即可) ldr r0, =WTCON ldr r1, =0x0 str r1, [r0] // 第2步:设置SVC栈 ldr sp, =SVC_STACK // 第3步:开/关icache mrc p15,0,r0,c1,c0,0; // 读出cp15的c1到r0中 //bic r0, r0, #(1<<12) // bit12 置0 关icache orr r0, r0, #(1<<12) // bit12 置1 开icache mcr p15,0,r0,c1,c0,0; // 第4步:重定位 // adr指令用于加载_start当前运行地址 adr r0, _start // adr加载时就叫短加载 // ldr指令用于加载_start的链接地址:0xd0024000 ldr r1, =_start // ldr加载时如果目标寄存器是pc就叫长跳转,如果目标寄存器是r1等就叫长加载 // bss段的起始地址 ldr r2, =bss_start // 就是我们重定位代码的结束地址,重定位只需重定位代码段和数据段即可 cmp r0, r1 // 比较_start的运行时地址和链接地址是否相等 beq clean_bss // 如果相等说明不需要重定位,所以跳过copy_loop,直接到clean_bss // 如果不相等说明需要重定位,那么直接执行下面的copy_loop进行重定位 // 重定位完成后继续执行clean_bss。 // 用汇编来实现的一个while循环 copy_loop: ldr r3, [r0], #4 // 源 将地址为r0的数据给r3.然后r0=r0+4 str r3, [r1], #4 // 目的 这两句代码就完成了4个字节内容的拷贝 cmp r1, r2 // r1和r2都是用ldr加载的,都是链接地址,所以r1不断+4总能等于r2 bne copy_loop // 清bss段,其实就是在链接地址处把bss段全部清零 clean_bss: ldr r0, =bss_start ldr r1, =bss_end cmp r0, r1 // 如果r0等于r1,说明bss段为空,直接下去 beq run_on_dram // 清除bss完之后的地址 mov r2, #0 clear_loop: str r2, [r0], #4 // 先将r2中的值放入r0所指向的内存地址(r0中的值作为内存地址), cmp r0, r1 // 然后r0 = r0 + 4 bne clear_loop run_on_dram: // 长跳转到led_blink开始第二阶段 ldr pc, =led_blink // ldr指令实现长跳转 // 从这里之后就可以开始调用C程序了 //bl led_blink // bl指令实现短跳转 // 汇编最后的这个死循环不能丢 b .
led_blink在c语言程序里,与上章代码相同不再展开。
链接脚本
link.lds
SECTIONS { . = 0xd0024000; //指定链接地址 .text : { start.o * (.text) } .data : { * (.data) } bss_start = .; .bss : { * (.bss) } bss_end = .; }
Makefile
led.bin: start.o led.o arm-linux-ld -Tlink.lds -o led.elf $^ //-T后面跟的为链接脚本 arm-linux-objcopy -O binary led.elf led.bin arm-linux-objdump -D led.elf > led_elf.dis gcc mkv210_image.c -o mkx210 ./mkx210 led.bin 210.bin %.o : %.S arm-linux-gcc -o $@ $< -c -nostdlib %.o : %.c arm-linux-gcc -o $@ $< -c -nostdlib clean: rm *.o *.elf *.bin *.dis mkx210 -f
重定位与链接脚本