首页 > 代码库 > Edit Distance
Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
最小编辑距离
设dp[i][j]为w1前i个字符转换成w2前j个字符所需要的最小步骤,那么有
dp[i][j] = min{ 增加一个字符 dp[i-1][j] + 1, 删除一个字符 dp[i][j-1] + 1, 替换一个字符 dp[i-1][j-1] + 1 }
1 class Solution { 2 public: 3 int minDistance(string word1, string word2) { 4 const int len1 = word1.length(); 5 const int len2 = word2.length(); 6 int dp[len1+1][len2+1]; 7 dp[0][0] = 0; //初试化 8 for(int j=1; j<=len2; ++j) dp[0][j] = j; //不断增加字符 9 for(int i=1; i<=len1; ++i) dp[i][0] = i; //不断删除字符10 for(int i=1; i<=len1; ++i)11 for(int j=1; j<=len2; ++j)12 dp[i][j] = min( dp[i-1][j-1] + (word1[i-1] == word2[j-1] ? 0 : 1), min(dp[i-1][j]+1, dp[i][j-1]+1) );13 return dp[len1][len2];14 }15 };
Edit Distance
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。