首页 > 代码库 > Edit Distance
Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
class Solution {
public:
int minDistance(string word1, string word2)
{
int n1=word1.length()+1;
int n2=word2.length()+1;
int min[n1][n2];
for(int i=0;i<n1;i++) min[i][0]=i;
for(int i=0;i<n2;i++) min[0][i]=i;
for(int i=1;i<n1;i++)
for(int j=1;j<n2;j++)
{
//replace
int min1=min[i-1][j-1]+(word1[i-1]==word2[j-1]?0:1);
//add or delete
int min2=min[i][j-1]+1;
int min3=min[i-1][j]+1;
if(min1>min2) min1=min2;
if(min1>min3) min1=min3;
min[i][j]=min1;
}
return min[n1-1][n2-1];
}
};
public:
int minDistance(string word1, string word2)
{
int n1=word1.length()+1;
int n2=word2.length()+1;
int min[n1][n2];
for(int i=0;i<n1;i++) min[i][0]=i;
for(int i=0;i<n2;i++) min[0][i]=i;
for(int i=1;i<n1;i++)
for(int j=1;j<n2;j++)
{
//replace
int min1=min[i-1][j-1]+(word1[i-1]==word2[j-1]?0:1);
//add or delete
int min2=min[i][j-1]+1;
int min3=min[i-1][j]+1;
if(min1>min2) min1=min2;
if(min1>min3) min1=min3;
min[i][j]=min1;
}
return min[n1-1][n2-1];
}
};
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。