首页 > 代码库 > Leetcode-Unique Paths

Leetcode-Unique Paths

A robot is located at the top-left corner of a m x n grid (marked ‘Start‘ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish‘ in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

分析:此题第一眼想到就是DFS分别从右边格子和下边的格子各自探测然后得到结果

1         public int search(int m,int n,int cur_x,int cur_y){2             if(cur_x == m-1 && cur_y == n-1){3                 return 1;4             }5             if(cur_x > m-1 || cur_y > n-1){6                 return  0;7             }            8              return search(m,n,cur_x,cur_y+1) + search(m,n,cur_x+1,cur_y);            9         }

提交, 超时,我擦

再想想,递归操作因为有回溯,会有重复探测重复计算的问题,效率低

换个写法

1         public int searchNew(int m,int n){2             if(m == 1 || n == 1){3                 return  1;4             }            5             return searchNew(m-1,n) + searchNew(m,n-1);6         

还是递归,只不过简洁了点,但是还是超时(递归没搞清楚啊,递归必然是有重复计算的问题)

那就DP填表吧,避免重复计算,分别从1*1的矩阵一直算到m*n,开个m*n的二维数组轻松搞定

 

但是---忽然想到这种只需要前一步结果的填表其实不需要矩阵,省点空间,开个一维数组保存上一步的结果就行了

 1         public int uniquePathsNew(int m,int n){ 2             int [] a = new int[n];                     3             for(int i = 0;i<n;i++){ 4                 a[i] = 1; 5             }             6             for(int i=1;i<m;i++){ 7                 for(int j = 1;j< n;j++){ 8                     a[j] = a[j] + a[j-1]; 9                 }10             }            11             return a[n-1];12         }

轻松AC

 

Leetcode-Unique Paths