首页 > 代码库 > Leetcode:Unique Paths
Leetcode:Unique Paths
A robot is located at the top-left corner of a m x n grid (marked ‘Start‘ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish‘ in the diagram below).
How many possible unique paths are there?
分析:这道题可以用动态规划解,f[i][j]表示从(0,0)到(i,j)的路径数,递推公式为f[i][j] = f[i-1][j] + f[i][j-1]。时间复杂度O(n^2),空间复杂度O(n^2)。代码如下:
class Solution {public: int uniquePaths(int m, int n) { int f[m][n]; for(int i = 0; i < n; i++) f[0][i] = 1; for(int i = 0; i < m; i++) f[i][0] = 1; for(int i = 1; i < m; i++) for(int j = 1; j < n; j++) f[i][j] = f[i][j-1] + f[i-1][j]; return f[m-1][n-1]; }};
其实在用动态规划时,我们可以用一个滚动数组代替二维数组。代码如下:
class Solution {public: int uniquePaths(int m, int n) { vector<int> f(n,0); f[0] = 1; for(int i = 0; i < m; i++) for(int j = 1; j < n; j++) f[j] = f[j] + f[j-1]; return f[n-1]; }};
Leetcode:Unique Paths
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。