首页 > 代码库 > KMP PKU 3461

KMP PKU 3461

原题http://poj.org/problem?id=3461

Oulipo
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 23987 Accepted: 9613

Description

The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter ‘e‘. He was a member of the Oulipo group. A quote from the book:

Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…

Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive ‘T‘s is not unusual. And they never use spaces.

So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {‘A‘, ‘B‘, ‘C‘, …, ‘Z‘} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

  • One line with the word W, a string over {‘A‘, ‘B‘, ‘C‘, …, ‘Z‘}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W).
  • One line with the text T, a string over {‘A‘, ‘B‘, ‘C‘, …, ‘Z‘}, with |W| ≤ |T| ≤ 1,000,000.

Output

For every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.

Sample Input

3
BAPC
BAPC
AZA
AZAZAZA
VERDI
AVERDXIVYERDIAN

Sample Output

1
3
0
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <limits.h>
#include <ctype.h>
#include <string.h>
#include <string>
#include <math.h>
#include <algorithm>
#include <iostream>
#include <queue>
#include <stack>
#include <vector>
#include <set>
#include <map>
using namespace std;
#define MAXN1 10000 + 10
#define MAXN2 1000000 + 10
char a[MAXN1];
char b[MAXN2];
int next[MAXN1];
int len1;
int len2;
//int count;

void Getnext(){
    int i = 0;
    int j = -1;
    next[0] = -1;
    while(i < len1){
        if(j==-1 || b[i]==b[j]){
            i++;
            j++;
            next[i] = j;
        }
        else{
            j = next[j];
        }
    }
}

/*int KMP(int s,int count){
	if(len2-s < len1){
		return count;
	}
    int i = s;
    int j = 0;
    while(i<len2 && j<len1){
        if(j==-1 || b[i]==a[j]){
            i++;
            j++;
        }
        else{
            j = next[j];
        }
    }
    if(j == len1){
        count++;
        KMP(i-1,count);
    }
    else{
        KMP(s+1,count);
    }
}*/
int KMP(){
	int count = 0;
	int i = 0;
	int j = 0;
	for(i=0;i<len2;){
		if(b[i]==a[j] || j==-1){
			i++;
			j++;
			if(j == len1){
				j = next[j];//慢慢体会这里。相信你可以的。 
				count++;
			}
		}
		else{
			j = next[j];
		}
	}

	return  count;
}
int main(){
    int T,i;
    
    while(~scanf("%d",&T)){
        while(T--){
            //count = 0;
            scanf("%s%s",a,b);
            len1 = strlen(a);
            len2 = strlen(b);
            Getnext();
            //int mark = 0;
            //while(len2-mark+1 >= len1){
            //   int mark = KMP(mark);
            //}
			if(len1 == 1){
				int mark = 0;
				for(i=0;i<len2;i++){
					if(a[0] == b[i]){
						mark++;
					}
				}
				printf("%d\n",mark);
				continue;
			}
			else{
				int ans = KMP();
				printf("%d\n",ans);
			}
			
        }
    }
    
    return 0;
}


 

KMP PKU 3461