首页 > 代码库 > 红黑树与AVL(平衡二叉树)的区别
红黑树与AVL(平衡二叉树)的区别
关于红黑树和AVL树,来自网络:
1 好处 及 用途
红黑树 并不追求“完全平衡 ”——它只要求部分地达到平衡要求,降低了对旋转的要求,从而提高了性能。
红黑树能够以 O(log2 n) 的时间复杂度进行搜索、插入、删除操作。此外,由于它的设计,任何不平衡都会在三次旋转之内解决。当然,还有一些更好的,但实现起来更复杂的数据结构 能够做到一步旋转之内达到平衡,但红黑树能够给我们一个比较“便宜”的解决方案。红黑树的算法时间复杂度和AVL相同,但统计性能比AVL树更高。
当然,红黑树并不适应所有应用树的领域。如果数据基本上是静态的,那么让他们待在他们能够插入,并且不影响平衡的地方会具有更好的性能。如果数据完全是静态的,例如,做一个哈希表,性能可能会更好一些。
在实际的系统中,例如,需要使用动态规则的防火墙系统,使用红黑树而不是散列表被实践证明具有更好的伸缩性。
典型的用途是实现关联数组
2 AVL树是最先发明的自平衡二叉查 找树。在AVL树中任何节点的两个儿子子树的高度最大差别为一,所以它也被称为高度平衡树。查找、插入和删除在平均和最坏情况下都是O(log n)。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它。
引入二叉树的目的是为了提高二叉树的搜索的效率,减少树的平均搜索长度.为此,就必须每向二叉树插入一个结点时调整树的结构,使得二叉树搜索保持平衡,从而可能降低树的高度,减少的平均树的搜索长度.
AVL树的定义:
一棵AVL树满足以下的条件:
1>它的左子树和右子树都是AVL树
2>左子树和右子树的高度差不能超过1
从条件1可能看出是个递归定义,如GNU一样.
性质:
1>一棵n个结点的AVL树的其高度保持在0(log2(n)),不会超过3/2log2(n+1)
2>一棵n个结点的AVL树的平均搜索长度保持在0(log2(n)).
3>一棵n个结点的AVL树删除一个结点做平衡化旋转所需要的时间为0(log2(n)).
从1这点来看 红黑树是牺牲了严格的高度平衡的优越条件 为 代价红黑树能够以O(log2 n)的时间复杂度进行搜索、插入、删除操作。此外,由于它的设计,任何不平衡都会在三次旋转之内解决。当然,还有一些更好的,但实现起来更复杂的数据结构 能够做到一步旋转之内达到平衡,但红黑树能够给我们一个比较“便宜”的解决方案。红黑树的算法时间复杂度和AVL相同,但统计性能比AVL树更高.
红黑树与AVL(平衡二叉树)的区别