首页 > 代码库 > 3993: [SDOI2015]星际战争

3993: [SDOI2015]星际战争

3993: [SDOI2015]星际战争

Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special Judge
Submit: 1244  Solved: 560
[Submit][Status][Discuss]

Description

 3333年,在银河系的某星球上,X军团和Y军团正在激烈地作战。在战斗的某一阶段,Y军团一共派遣了N个巨型机器人进攻X军团的阵地,其中第i个巨型机器人的装甲值为Ai。当一个巨型机器人的装甲值减少到0或者以下时,这个巨型机器人就被摧毁了。X军团有M个激光武器,其中第i个激光武器每秒可以削减一个巨型机器人Bi的装甲值。激光武器的攻击是连续的。这种激光武器非常奇怪,一个激光武器只能攻击一些特定的敌人。Y军团看到自己的巨型机器人被X军团一个一个消灭,他们急需下达更多的指令。为了这个目标,Y军团需要知道X军团最少需要用多长时间才能将Y军团的所有巨型机器人摧毁。但是他们不会计算这个问题,因此向你求助。

Input

第一行,两个整数,N、M。

第二行,N个整数,A1、A2…AN。
第三行,M个整数,B1、B2…BM。
接下来的M行,每行N个整数,这些整数均为0或者1。这部分中的第i行的第j个整数为0表示第i个激光武器不可以攻击第j个巨型机器人,为1表示第i个激光武器可以攻击第j个巨型机器人。

Output

 一行,一个实数,表示X军团要摧毁Y军团的所有巨型机器人最少需要的时间。输出结果与标准答案的绝对误差不超过10-3即视为正确。

Sample Input

2 2
3 10
4 6
0 1
1 1

Sample Output

1.300000

HINT

 

 【样例说明1】


战斗开始后的前0.5秒,激光武器1攻击2号巨型机器人,激光武器2攻击1号巨型机器人。1号巨型机器人被完全摧毁,2号巨型机器人还剩余8的装甲值;

接下来的0.8秒,激光武器1、2同时攻击2号巨型机器人。2号巨型机器人被完全摧毁。

对于全部的数据,1<=N, M<=50,1<=Ai<=105,1<=Bi<=1000,输入数据保证X军团一定能摧毁Y军团的所有巨型机器人

 

 

 

Source

Round 1 感谢yts1999上传

题解:

显然随着时间的增长,能摧毁的机器人是不减的,这就有了单调性
我们就先二分时间t,由S向每个武器连容量为它在t时间内能造成的伤害的边
由武器向每个能攻击到的机器人连一条容量为inf的边,由每个机器人向T连容量为它的装甲值的边
如果最大流=所有机器人的装甲值,则这个时间是可行的

 

#include<cmath>#include<cstdio>#include<cstring>#include<iostream>using namespace std;typedef double real;const int V=120;const int E=V*V*2;const real eps=1e-8;struct edge{int v,next;real cap;}e[E],ed[E];int tot=1,po,head[V],last[V];int n,m,S,T,dis[V],q[V];bool vis[V];real ans,a[V],b[V];inline int read(){    int x=0,f=1;char ch=getchar();    while(ch<0||ch>9){if(ch==-)f=-1;ch=getchar();}    while(ch>=0&&ch<=9){x=x*10+ch-0;ch=getchar();}    return x*f;}inline void add(int x,int y,real z){    e[++tot].v=y;e[tot].cap=z;e[tot].next=head[x];head[x]=tot;    e[++tot].v=x;e[tot].cap=0;e[tot].next=head[y];head[y]=tot;}inline bool bfs(){    for(int i=S;i<=T;i++) dis[i]=-1,vis[i]=0;    unsigned short h=0,t=1;q[t]=S;dis[S]=0;    while(h!=t){        int x=q[++h];        for(int i=head[x];i;i=e[i].next){            if(dis[e[i].v]==-1&&e[i].cap){                dis[e[i].v]=dis[x]+1;                if(e[i].v==T) return 1;                q[++t]=e[i].v;            }        }    }    return 0;}real dfs(int x,real f){    if(x==T) return f;    real used=0,t;    for(int i=head[x];i;i=e[i].next){        if(e[i].cap&&dis[e[i].v]==dis[x]+1){            t=dfs(e[i].v,min(e[i].cap,f));            e[i].cap-=t;e[i^1].cap+=t;            used+=t;f-=t;            if(!f) return used;        }    }    if(!used) dis[x]=-1;    return used;}inline real dinic(){    real res=0;    while(bfs()) res+=dfs(S,2e9);    return res;}inline void change(real lim){    for(int i=2;i<=po;i++) e[i]=ed[i];    tot=po;    for(int i=S;i<=m;i++) head[i]=last[i];    for(int i=1;i<=m;i++) add(S,i,lim*b[i]);}inline void init(){    n=read();m=read();S=0;T=n+m+1;    for(int i=1;i<=n;i++) a[i]=read(),add(i+m,T,a[i]),ans+=a[i];    for(int i=1;i<=m;i++) b[i]=read();    for(int i=1,x;i<=m;i++){        for(int j=1;j<=n;j++){            x=read();            if(x) add(i,j+m,2e9);        }    }    po=tot;    for(int i=2;i<=tot;i++) ed[i]=e[i];    for(int i=S;i<=m;i++) last[i]=head[i];}inline void work(){    real l=1.0,r=ans,mid,now,p;    while(r-l>eps){        mid=(l+r)/2.0;        change(mid);        now=dinic();        if(fabs(now-ans)<=eps) r=mid;        else l=mid;    }    printf("%.7lf",l);}int main(){    init();    work();    return 0;}

 

3993: [SDOI2015]星际战争