首页 > 代码库 > HDOJ 4786 Fibonacci Tree
HDOJ 4786 Fibonacci Tree
最大生成树夹最小生成树,老题目了,依稀记得当年在成都靠这题捡了个铜。。。。。
Fibonacci Tree
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1572 Accepted Submission(s): 479
Problem Description
Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:
Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
Input
The first line of the input contains an integer T, the number of test cases.
For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).
Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).
Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
Output
For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
Sample Input
2 4 4 1 2 1 2 3 1 3 4 1 1 4 0 5 6 1 2 1 1 3 1 1 4 1 1 5 1 3 5 1 4 2 1
Sample Output
Case #1: Yes Case #2: No
Source
2013 Asia Chengdu Regional Contest
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int maxn=100100; int nf,fib[100]; int getFib() { fib[0]=1;fib[1]=2; nf=2; for(int i=2;fib[nf-1]<=100100;i++) { fib[nf]=fib[nf-1]+fib[nf-2]; nf++; } } int n,m; int fa[maxn]; int find(int x) { if(x==fa[x]) return x; return fa[x]=find(fa[x]); } struct Edge { int u,v,c; }edge[maxn]; bool cmp1(Edge x,Edge y) { return x.c<y.c; } bool cmp2(Edge x,Edge y) { return x.c>y.c; } int Kruscal() { int cnt=n,ans=0; for(int i=0;i<=n+1;i++) fa[i]=i; for(int i=0;i<m;i++) { int f1=find(edge[i].u); int f2=find(edge[i].v); if(f1!=f2) { fa[f1]=f2; ans+=edge[i].c; cnt--; if(cnt==1) break; } } return (cnt==1)?ans:0x3f3f3f3f; } int main() { getFib(); int T_T,cas=1; scanf("%d",&T_T); while(T_T--) { scanf("%d%d",&n,&m); for(int i=0;i<m;i++) { int a,b,w; scanf("%d%d%d",&a,&b,&w); edge[i].u=a; edge[i].v=b; edge[i].c=w; } sort(edge,edge+m,cmp1); int MiMST=Kruscal(); sort(edge,edge+m,cmp2); int MxMST=Kruscal(); bool flag=false; for(int i=0;i<nf;i++) { if(fib[i]>=MiMST&&fib[i]<=MxMST) { flag=true; break; } } printf("Case #%d: ",cas++); if(flag) puts("Yes"); else puts("No"); } return 0; }
HDOJ 4786 Fibonacci Tree
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。