首页 > 代码库 > HDOJ 5044 Tree
HDOJ 5044 Tree
树链剖分裸题。。。。
又要扩栈又要输入挂还卡格式。。。。真无语
Tree
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1538 Accepted Submission(s): 261
Problem Description
You are given a tree (an acyclic undirected connected graph) with N nodes. The tree nodes are numbered from 1 to N
There are N - 1 edges numbered from 1 to N - 1.
Each node has a value and each edge has a value. The initial value is 0.
There are two kind of operation as follows:
● ADD1 u v k: for nodes on the path from u to v, the value of these nodes increase by k.
● ADD2 u v k: for edges on the path from u to v, the value of these edges increase by k.
After finished M operation on the tree, please output the value of each node and edge.
There are N - 1 edges numbered from 1 to N - 1.
Each node has a value and each edge has a value. The initial value is 0.
There are two kind of operation as follows:
● ADD1 u v k: for nodes on the path from u to v, the value of these nodes increase by k.
● ADD2 u v k: for edges on the path from u to v, the value of these edges increase by k.
After finished M operation on the tree, please output the value of each node and edge.
Input
The first line of the input is T (1 ≤ T ≤ 20), which stands for the number of test cases you need to solve.
The first line of each case contains two integers N ,M (1 ≤ N, M ≤105),denoting the number of nodes and operations, respectively.
The next N - 1 lines, each lines contains two integers u, v(1 ≤ u, v ≤ N ), denote there is an edge between u,v and its initial value is 0.
For the next M line, contain instructions “ADD1 u v k” or “ADD2 u v k”. (1 ≤ u, v ≤ N, -105 ≤ k ≤ 105)
The first line of each case contains two integers N ,M (1 ≤ N, M ≤105),denoting the number of nodes and operations, respectively.
The next N - 1 lines, each lines contains two integers u, v(1 ≤ u, v ≤ N ), denote there is an edge between u,v and its initial value is 0.
For the next M line, contain instructions “ADD1 u v k” or “ADD2 u v k”. (1 ≤ u, v ≤ N, -105 ≤ k ≤ 105)
Output
For each test case, print a line “Case #t:”(without quotes, t means the index of the test case) at the beginning.
The second line contains N integer which means the value of each node.
The third line contains N - 1 integer which means the value of each edge according to the input order.
The second line contains N integer which means the value of each node.
The third line contains N - 1 integer which means the value of each edge according to the input order.
Sample Input
2 4 2 1 2 2 3 2 4 ADD1 1 4 1 ADD2 3 4 2 4 2 1 2 2 3 1 4 ADD1 1 4 5 ADD2 3 2 4
Sample Output
Case #1: 1 1 0 1 0 2 2 Case #2: 5 0 0 5 0 4 0
Source
2014 ACM/ICPC Asia Regional Shanghai Online
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; const int maxn=100100; int nextInt() { char ch; int ok=0,fu=0,ans=0; while(ch=getchar()) { if(ch=='-'||(ch>='0'&&ch<='9')) { ok=1; if(ch=='-') fu=1; else { ans=ans*10+(ch-'0'); } } else if(ok==1) break; } if(fu) ans=-ans; return ans; } struct Edge { int to,next; }edge[maxn*2]; int Adj[maxn],Size; void add_edge(int u,int v) { edge[Size].to=v; edge[Size].next=Adj[u]; Adj[u]=Size++; } int fa[maxn],deep[maxn],num[maxn],son[maxn]; int top[maxn],p[maxn],rp[maxn],pos; int tree[2][maxn],n,m; inline int lowbit(int x) { return x&(-x); } void ADD(int id,int p,int v) { for(int i=p;i<=n;i+=lowbit(i)) tree[id][i]+=v; } int SUM(int id,int p) { int ret=0; for(int i=p;i;i-=lowbit(i)) ret+=tree[id][i]; return ret; } void init() { memset(Adj,-1,sizeof(Adj)); memset(son,-1,sizeof(son)); memset(tree,0,sizeof(tree)); Size=0;pos=1; } void dfs1(int u,int pre,int d) { num[u]=1; fa[u]=pre; deep[u]=d; for(int i=Adj[u];~i;i=edge[i].next) { int v=edge[i].to; if(v==pre) continue; dfs1(v,u,d+1); num[u]+=num[v]; if(son[u]==-1||num[son[u]]<num[v]) { son[u]=v; } } } void getP(int u,int tp) { top[u]=tp; p[u]=pos++; rp[p[u]]=u; if(son[u]!=-1) getP(son[u],tp); for(int i=Adj[u];~i;i=edge[i].next) { int v=edge[i].to; if(v!=fa[u]&&v!=son[u]) getP(v,v); } } void Change(int u,int v,int k) { int f1=top[u],f2=top[v]; while(f1!=f2) { if(deep[f1]<deep[f2]) { swap(f1,f2); swap(u,v); } ADD(0,p[f1],k); ADD(0,p[u]+1,-k); u=fa[f1]; f1=top[u]; } if(deep[u]<deep[v]) swap(u,v); ADD(0,p[v],k); ADD(0,p[u]+1,-k); } void Change2(int u,int v,int k) { int f1=top[u],f2=top[v]; while(f1!=f2) { if(deep[f1]<deep[f2]) { swap(f1,f2); swap(u,v); } ADD(1,p[f1]-1,k); ADD(1,p[u],-k); u=fa[f1]; f1=top[u]; } if(u==v) return ; if(deep[u]<deep[v]) swap(u,v); ADD(1,p[son[v]]-1,k); ADD(1,p[u],-k); } int bian[maxn][2]; int main() { int T_T,cas=1; scanf("%d",&T_T); while(T_T--) { init(); scanf("%d%d",&n,&m); for(int i=0;i<n-1;i++) { int a,b; a=nextInt(); b=nextInt(); add_edge(a,b); add_edge(b,a); bian[i][0]=a;bian[i][1]=b; } dfs1(1,0,0); getP(1,1); for(int i=0;i<n-1;i++) { if(deep[bian[i][0]]<deep[bian[i][1]]) swap(bian[i][0],bian[i][1]); } while(m--) { char op[10]; int a,b,c; scanf("%s",op); a=nextInt(); b=nextInt(); c=nextInt(); if(op[3]=='1') { Change(a,b,c); } else if(op[3]=='2') { Change2(a,b,c); } } printf("Case #%d:\n",cas++); for(int i=1;i<=n;i++) printf("%d%c",SUM(0,p[i]),(i==n)?'\n':' '); for(int i=0;i<n-1;i++) { printf("%d%c",SUM(1,p[bian[i][0]]-1),(i==n-2)?'\n':' '); } if(n==1) putchar(10); } return 0; }
HDOJ 5044 Tree
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。