首页 > 代码库 > POJ1679(次小生成树)
POJ1679(次小生成树)
The Unique MST
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 27651 | Accepted: 9909 |
Description
Given a connected undirected graph, tell if its minimum spanning tree is unique.
Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V‘, E‘), with the following properties:
1. V‘ = V.
2. T is connected and acyclic.
Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E‘) of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E‘.
Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V‘, E‘), with the following properties:
1. V‘ = V.
2. T is connected and acyclic.
Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E‘) of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E‘.
Input
The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.
Output
For each input, if the MST is unique, print the total cost of it, or otherwise print the string ‘Not Unique!‘.
Sample Input
23 31 2 12 3 23 1 34 41 2 22 3 23 4 24 1 2
Sample Output
3Not Unique!
求次小生成树步骤:
1)用prime求最小生成树,并记录树中u,v结点路径之间边的权值的最大值dp[u][v]。
2)一次枚举u,v结点不在最小生成树中的边,并将dp[u][v]删除,形成新的树。记录形成所有新树的权值的最小值。
#include <cstdio>#include <cstring>#include <algorithm>using namespace std;const int MAXN=105;const int INF=0x3f3f3f3f;int arc[MAXN][MAXN];int n,m;int d[MAXN],vis[MAXN];int pre[MAXN],dp[MAXN][MAXN];bool mst[MAXN][MAXN];int prim(int src){ memset(pre,0,sizeof(pre)); memset(mst,false,sizeof(mst)); memset(dp,0,sizeof(dp)); for(int i=1;i<=n;i++) { vis[i]=0; d[i]=INF; } d[src]=0; int t=n; int res=0; while(t--) { int mincost=INF; int k; for(int i=1;i<=n;i++) { if(!vis[i]&&d[i]<mincost) { k=i; mincost=d[i]; } } vis[k]=1; res+=mincost; int fa=pre[k]; mst[fa][k]=true; mst[k][fa]=true; for(int i=1;i<=n;i++) { if(vis[i]&&i!=k) { dp[k][i]=dp[i][k]=max(dp[fa][i],mincost); } } for(int i=1;i<=n;i++) { if(!vis[i]&&d[i]>arc[k][i]) { d[i]=arc[k][i]; pre[i]=k; } } } return res;}int main(){ int T; scanf("%d",&T); while(T--) { scanf("%d%d",&n,&m); for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) if(i==j) arc[i][j]=0; else arc[i][j]=INF; for(int i=0;i<m;i++) { int u,v,w; scanf("%d%d%d",&u,&v,&w); arc[u][v]=w; arc[v][u]=w; } int res=prim(1); int nmx=INF; for(int i=1;i<=n;i++) { for(int j=i+1;j<=n;j++) { if(arc[i][j]!=INF&&!mst[i][j]) { nmx=min(nmx,res+arc[i][j]-dp[i][j]); } } } if(nmx==res) { printf("Not Unique!\n"); } else { printf("%d\n",res); } } return 0;}
POJ1679(次小生成树)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。