首页 > 代码库 > Lowest Common Ancestor (LCA)

Lowest Common Ancestor (LCA)

题目链接

In a rooted tree, the lowest common ancestor (or LCA for short) of two vertices u and v is defined as the lowest vertex that is ancestor of both that two vertices.

Given a tree of N vertices, you need to answer the question of the form "r u v" which means if the root of the tree is at r then what is LCA of u and v.

Input

The first line contains a single integer N. Each line in the next N - 1 lines contains a pair of integer u andv representing a edge between this two vertices.

The next line contains a single integer Q which is the number of the queries. Each line in the next Q lines contains three integers r, u, v representing a query.

Output

For each query, write out the answer on a single line.

Constraints

20 points:

  • 1 ≤ NQ ≤ 100

40 points:

  • 1 ≤ NQ ≤ 105
  • There is less than 10 unique value of r in all queries

40 points:

  • 1 ≤ NQ ≤ 2 × 105

Example

Input:41 22 31 421 4 22 4 2Output:12

Explanation

  • "1 4 2": if 1 is the root, it is parent of both 2 and 4 so LCA of 2 and 4 is 1.
  • "2 4 2": the root of the tree is at 2, according to the definition, LCA of any vertex with 2 is 2.

题意:给出一棵N个结点的树,有Q次询问,每次询问给出三个数r,x,y。

求当以r作为树根时,x和y的lca

解决本题,有两个关键的地方:

1. 每次询问的答案只可能是: x, y, r, lca(x, y), lca(x, r), lca(y, r),这里的lca都是以1为树根时的lca

 2. 如果 x = lca(u, v), 那么dist(x, root) + dist(x, u) + dist(x, v)的值是最小的。

Accepted Code:

 1 /************************************************************************* 2     > File Name: TALCA.cpp 3     > Author: Stomach_ache 4     > Mail: sudaweitong@gmail.com 5     > Created Time: 2014年09月24日 星期三 17时39分16秒 6     > Propose:  7  ************************************************************************/ 8 #include <cmath> 9 #include <string>10 #include <cstdio>11 #include <vector>12 #include <fstream>13 #include <cstring>14 #include <iostream>15 #include <algorithm>16 using namespace std;17 /*Let‘s fight!!!*/18 19 const int MAX_N = 200050;20 const int MAX_LOG = 20;21 typedef pair<int, int> pii;22 int N, Q;23 int p[MAX_N][MAX_LOG], depth[MAX_N];24 vector<int> G[MAX_N];25 26 void dfs(int u, int fa, int d) {27     p[u][0] = fa;28     depth[u] = d;29     for (int i = 0; i < G[u].size(); i++) {30         int v = G[u][i];31         if (v != fa) dfs(v, u, d + 1);32     }33 }34 35 void init() {36     dfs(1, -1, 0);37     for (int k = 0; k + 1 < MAX_LOG; k++) {38           for (int v = 1; v <= N; v++) {39             if (p[v][k] < 0) p[v][k + 1] = -1;40             else p[v][k + 1] = p[p[v][k]][k];41         }42     }43 }44 45 int lca(int u, int v) {46     if (depth[u] > depth[v]) swap(u, v);47     for (int k = 0; k < MAX_LOG; k++) {48         if ((depth[v] - depth[u]) >> k & 1) {49               v = p[v][k];50         }51     }52     if (u == v) return u;53     for (int k = MAX_LOG - 1; k >= 0; k--) {54           if (p[u][k] != p[v][k]) {55             u = p[u][k];56             v = p[v][k];57         }58     }59     return p[u][0];60 }61 62 int dist(int u, int v) {63       int x = lca(u, v);64       return depth[u] + depth[v] - 2 * depth[x];65 }66 67 int main(void) {68     ios::sync_with_stdio(false);69     while (cin >> N) {70         for (int i = 1; i <= N; i++) G[i].clear();71         for (int i = 1; i < N; i++) {72             int u, v;73             cin >> u >> v;74             G[u].push_back(v);75             G[v].push_back(u);76         }77 78         init();79         cin >> Q;80         pii s[6];81         while (Q--) {82             int r, u, v;83             cin >> r >> u >> v;84             s[0].second = r;85             s[1].second = u;86             s[2].second = v;87             s[3].second = lca(r, u);88             s[4].second = lca(r, v);89             s[5].second = lca(u, v);90             for (int i = 0; i < 6; i++) {91                   int x = s[i].second;92                   s[i].first = dist(u, x) + dist(v, x) + dist(r, x);93             }94             sort(s, s + 6);95             cout << s[0].second << endl;96         }97     }98     return 0;99 }

 

Lowest Common Ancestor (LCA)