首页 > 代码库 > HDU - 5017 Ellipsoid(模拟退火法)
HDU - 5017 Ellipsoid(模拟退火法)
Problem Description
Given a 3-dimension ellipsoid(椭球面)
your task is to find the minimal distance between the original point (0,0,0) and points on the ellipsoid. The distance between two points (x1,y1,z1) and (x2,y2,z2) is defined as
your task is to find the minimal distance between the original point (0,0,0) and points on the ellipsoid. The distance between two points (x1,y1,z1) and (x2,y2,z2) is defined as
Input
There are multiple test cases. Please process till EOF.
For each testcase, one line contains 6 real number a,b,c(0 < a,b,c,< 1),d,e,f(0 ≤ d,e,f < 1), as described above. It is guaranteed that the input data forms a ellipsoid. All numbers are fit in double.
For each testcase, one line contains 6 real number a,b,c(0 < a,b,c,< 1),d,e,f(0 ≤ d,e,f < 1), as described above. It is guaranteed that the input data forms a ellipsoid. All numbers are fit in double.
Output
For each test contains one line. Describes the minimal distance. Answer will be considered as correct if their absolute error is less than 10-5.
Sample Input
1 0.04 0.01 0 0 0
Sample Output
1.0000000
Source
2014 ACM/ICPC Asia Regional Xi‘an Online
思路:模拟退火法,学着网上写的
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const int inf = 1e8; const double eps = 1e-8; const int dx[8] = {0,0,1,-1,1,-1,1,-1}; const int dy[8] = {1,-1,0,0,1,1,-1,-1}; double a, b, c, d, e, f; double dis(double x, double y, double z) { return sqrt(x * x + y * y + z * z); } double calz(double x, double y) { double A = c; double B = d * y + e * x; double C = f * x * y + a * x * x + b * y * y - 1.0; double delta = B * B - 4.0 * A * C; if (delta < 0.0) return inf+10.0; delta = sqrt(delta); double z1 = (-B + delta) / (2.0 * A); double z2 = (-B - delta) / (2.0 * A); if (dis(x, y, z1) < dis(x, y, z2)) return z1; return z2; } double solve() { double x = 0, y = 0, z = sqrt(1.0/c); double step = 1.0, rate = 0.99; while (step > eps) { for (int k = 0; k < 8; k++) { double nx = x + step * dx[k]; double ny = y + step * dy[k]; double nz = calz(nx, ny); if (nz >= inf) continue; if (dis(nx, ny, nz) < dis(x, y, z)) { x = nx; y = ny; z = nz; } } step *= rate; } return dis(x, y, z); } int main() { while (scanf("%lf%lf%lf%lf%lf%lf", &a, &b, &c, &d, &e, &f) != EOF) { printf("%.7lf\n", solve()); } return 0; }
HDU - 5017 Ellipsoid(模拟退火法)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。