首页 > 代码库 > POJ 1077 Eight(康托展开+BFS)

POJ 1077 Eight(康托展开+BFS)

Eight
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 30176 Accepted: 13119 Special Judge

Description

The 15-puzzle has been around for over 100 years; even if you don‘t know it by that name, you‘ve seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let‘s call the missing tile ‘x‘; the object of the puzzle is to arrange the tiles so that they are ordered as: 
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15  x 

where the only legal operation is to exchange ‘x‘ with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle: 
 1  2  3  4    1  2  3  4    1  2  3  4    1  2  3  4  5  6  7  8    5  6  7  8    5  6  7  8    5  6  7  8  9  x 10 12    9 10  x 12    9 10 11 12    9 10 11 12 13 14 11 15   13 14 11 15   13 14  x 15   13 14 15  x            r->           d->           r-> 

The letters in the previous row indicate which neighbor of the ‘x‘ tile is swapped with the ‘x‘ tile at each step; legal values are ‘r‘,‘l‘,‘u‘ and ‘d‘, for right, left, up, and down, respectively. 

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and 
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing ‘x‘ tile, of course). 

In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three 
arrangement. 

Input

You will receive a description of a configuration of the 8 puzzle. The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus ‘x‘. For example, this puzzle 
 1  2  3  x  4  6  7  5  8 

is described by this list: 
 1 2 3 x 4 6 7 5 8 

Output

You will print to standard output either the word ``unsolvable‘‘, if the puzzle has no solution, or a string consisting entirely of the letters ‘r‘, ‘l‘, ‘u‘ and ‘d‘ that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line.

Sample Input

 2  3  4  1  5  x  7  6  8 

Sample Output

ullddrurdllurdruldr

Source

South Central USA 1998

 

题目链接:POJ 1077

主要就是用康托展开来映射判重的问题,info::val就是康托展开hash值,info::step就是积累的状态。另外感觉这题剧毒,自己本来用int vis[]和char his[]想最后回溯记录答案从而代替速度比较慢的string,结果居然超时……TLE一晚上,要不是看了大牛的博客估计要一直T在这个坑点上。还有不知道为什么string的加号重载在C++编译器里会CE,换G++才过。

什么是康托展开?——康托展开介绍文章

代码:

#include<iostream>#include<algorithm>#include<cstdlib>#include<sstream>#include<cstring>#include<bitset>#include<cstdio>#include<string>#include<deque>#include<stack>#include<cmath>#include<queue>#include<set>#include<map>using namespace std;#define INF 0x3f3f3f3f#define CLR(x,y) memset(x,y,sizeof(x))#define LC(x) (x<<1)#define RC(x) ((x<<1)+1)#define MID(x,y) ((x+y)>>1)typedef pair<int,int> pii;typedef long long LL;const double PI=acos(-1.0);const int N=362880+20;int fact[10]={1,1,2,6,24,120,720,5040,40320,362880};int direct[4][2]={{-1,0},{1,0},{0,-1},{0,1}};char MOVE[5]="udlr";struct info{	int s[9];	int indx;	string step;	int val;};info S,E;int T;int vis[N];string ans;int calcantor(int s[]){	int r=0;	for (int i=0; i<9; ++i)	{		int k=0;		for (int j=i+1; j<9; ++j)		{			if(s[j]<s[i])				++k;		}		r=r+k*fact[8-i];	}	return r;}bool check(const int &x,const int &y){	return (x>=0&&x<3&&y>=0&&y<3);}bool bfs(){	CLR(vis,0);	queue<info>Q;	Q.push(S);	vis[S.val]=1;	info now,v;	while (!Q.empty())	{		now=Q.front();		Q.pop();		if(now.val==T)		{			ans=now.step;			return true;		}		for (int i=0; i<4; ++i)		{			int x=now.indx/3;			int y=now.indx%3;			x+=direct[i][0];			y+=direct[i][1];			if(check(x,y))			{				v=now;				v.indx=x*3+y;				v.s[now.indx]=v.s[v.indx];				v.s[v.indx]=0;						v.val=calcantor(v.s);				if(!vis[v.val])				{									vis[v.val]=1;					v.step=now.step+MOVE[i];					if(v.val==T)					{						ans=v.step;						return true;					}					Q.push(v);				}			}		}	}	return false;}int main(void){	char temp;	int i;	T=46233;	while (cin>>temp)	{		if(temp==‘x‘)		{			S.s[0]=0;			S.indx=0;		}		else			S.s[0]=temp-‘0‘;		for (i=1; i<9; ++i)		{			cin>>temp;			if(temp==‘x‘)			{				S.s[i]=0;				S.indx=i;			}			else				S.s[i]=temp-‘0‘;		}		S.val=calcantor(S.s);		puts(!bfs()?"unsolvable":ans.c_str());	}	return 0;}

POJ 1077 Eight(康托展开+BFS)