首页 > 代码库 > ACM-康托展开+预处理BFS之魔板——hdu1430

ACM-康托展开+预处理BFS之魔板——hdu1430

魔板

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1679    Accepted Submission(s): 354

Problem Description
在魔方风靡全球之后不久,Rubik先生发明了它的简化版——魔板。魔板由8个相同大小的方块组成,每一个方块颜色均不相同,可用数字1-8分别表示。任一时刻魔板的状态可用方块的颜色序列表示:从魔板的左上角開始,按顺时针方向依次写下各方块的颜色代号,所得到的数字序列就可以表示此时魔板的状态。比如,序列(1,2,3,4,5,6,7,8)表示魔板状态为:

1 2 3 4
8 7 6 5

对于魔板,可施加三种不同的操作,详细操作方法例如以下:

A: 上下两行互换,如上图可变换为状态87654321
B: 每行同一时候循环右移一格,如上图可变换为41236785
C: 中间4个方块顺时针旋转一格,如上图可变换为17245368

给你魔板的初始状态与目标状态,请给出由初态到目态变换数最少的变换步骤,若有多种变换方案则取字典序最小的那种。
 
Input
每组測试数据包含两行,分别代表魔板的初态与目态。
 
Output
对每组測试数据输出满足题意的变换步骤。
 
Sample Input
12345678 17245368 12345678 82754631
 
Sample Output
C AC
 
Author
LL
 
Source
ACM暑期集训队练习赛(三)
 
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1430


做这道题,首先要搞懂 康托展开,具体解释可戳→http://blog.csdn.net/lttree/article/details/24798653
我刚開始用BFS做,TLE。。。
后来改用双向BFS,发现WA。。。(我的双向BFS:http://blog.csdn.net/lttree/article/details/24811373)
反正终于也没解决,好像是字典序的问题。

看网上其它人预处理一下。(就是打表)
然后这道题能够通过置换来解决:就是从一个状态到还有一个状态能够转换成从起点到某状态)
似懂非懂的感觉,后来看 青山绿水之辈 的博客懂了:

for( i=0;i<8;i++)
pos[s1[i]-‘0‘]=i+1+‘0‘;
for( i=0;i<8;i++)
s2[i]=pos[s2[i]-‘0‘];

k=kangtuo(s2);

上面一段代码的意思是:把起始目标看成了1,2,3,4,5,6,7,8  ;

列如:位置:12345678                12345678

           起初: 63728145       变      12345678

           终点: 86372541       成       51234876

解释一下:初:6在第1个位,那么在终点中找6用1取代,3在第2个位,在终点中找3用2取代,依次类推。

一開始我们就先按 12345678 这种顺序建立了一棵像树一样的,假设直接从初态不进行转变的话,那么我们的结果可能有非常多的走法,有可能是先走A或B都能够到目标,有多条路时,可是先走了B的路径,必需要输出小的也就是从A開始的那条路,那怎么办呢,就能够用转化的思想了,把初始状态变成12345678,这种话,我们一開始就是从这种顺序算出来的!!所以必须先进行转换,在从目标往上找并记下路径,一直找到终于父节点:12345678.


/**************************************
***************************************
*        Author:Tree                  *
*From :http://blog.csdn.net/lttree    *
* Title : 魔板                        *
*Source: hdu 1430                     *
* Hint  : 康托展开 BFS                *
***************************************
**************************************/
#include <iostream>
#include <string.h>
#include <string>
#include <queue>
using namespace std;
struct Node
{
    string str,step;
};
bool vis[40320+1];
int  pos[10],fac[] = {1,1,2,6,24,120,720,5040,40320};
// ans存从起点到达该点的答案
string ans[50000];
// 康托展开
int kangtuo(string a)
{
    int i,j,t,sum;
    sum=0;
    for( i=0; i<8 ;++i)
    {
        t=0;
        for(j=i+1;j<8;++j)
            if( a[i]>a[j] )
                ++t;
        sum+=t*fac[8-i-1];
    }
    return sum+1;
}
// 按A进行变换
void move_A(string &s)
{
    for(int i=0;i<4;++i)
        swap(s[i],s[i+4]);
}
// 按B进行变换
string move_B(string s)
{
    string temp=s;
    int i;
    for(i=0;i<8;++i)
    {
        if( i==0 || i==4 )  temp[i]=s[i+3];
        else    temp[i]=s[i-1];
    }
    return temp;
}
// 按C进行变换
void move_C(string &s)
{
    swap(s[1],s[2]);
    swap(s[5],s[6]);
    swap(s[1],s[6]);
}
void bfs( string s )
{
    memset(vis,0,sizeof(vis));
    queue <Node> q;
    Node pre,lst;

    pre.str=s;
    pre.step="";
    vis[kangtuo(s)]=1;
    ans[kangtuo(s)]=pre.step;
    q.push( pre );

    while( !q.empty() )
    {
        pre=q.front();
        q.pop();

        lst=pre;
        move_A(lst.str);
        if( !vis[kangtuo(lst.str)] )
        {
            lst.step+="A";
            vis[kangtuo(lst.str)]=1;
            ans[kangtuo(lst.str)]=lst.step;
            q.push(lst);
        }

        lst.str=move_B(pre.str);
        if( !vis[kangtuo(lst.str)] )
        {
            lst.step=pre.step+"B";
            vis[kangtuo(lst.str)]=1;
            ans[kangtuo(lst.str)]=lst.step;
            q.push(lst);
        }

        lst=pre;
        move_C(lst.str);
        if( !vis[kangtuo(lst.str)] )
        {
            lst.step+="C";
            vis[kangtuo(lst.str)]=1;
            ans[kangtuo(lst.str)]=lst.step;
            q.push(lst);
        }
    }

}
int main()
{
    int i,k;
    string s1,s2;
    // 预处理,从起点到各点。
    bfs("12345678");
    while( cin>>s1>>s2 )
    {
        // 将顺序改过来
        // 题目中 12345678 
        //  事实上是 1234
        //         8765
        //  我们就依照 12348765来存储
        swap(s1[4],s1[7]);
        swap(s1[5],s1[6]);
        swap(s2[4],s2[7]);
        swap(s2[5],s2[6]);
        for(i=0;i<8;i++)
            pos[s1[i]-‘0‘]=i+1;
        for(i=0;i<8;i++)
            s2[i]=pos[s2[i]-‘0‘];/*置换*/
        k=kangtuo(s2);
        cout<<ans[k]<<endl;
    }
    return 0;
}



ACM-康托展开+预处理BFS之魔板——hdu1430