首页 > 代码库 > 【POJ】2942 Knights of the Round Table(双连通分量)
【POJ】2942 Knights of the Round Table(双连通分量)
http://poj.org/problem?id=2942
各种逗。。。。
翻译白书上有;看了白书和网上的标程,学习了。。orz。
强连通分量就是先找出割点,然后用个栈在找出割点前维护子树,最后如果这个是割点那么子树就都是强连通分量,然后本题求的是奇圈,那么就进行黑白染色,判断是否为奇圈即可。将不是奇圈的所有强连通分量的点累计起来即可。
#include <cstdio>#include <cstring>#include <cmath>#include <string>#include <iostream>#include <algorithm>#include <queue>#include <set>#include <stack>#include <vector>using namespace std;#define rep(i, n) for(int i=0; i<(n); ++i)#define for1(i,a,n) for(int i=(a);i<=(n);++i)#define for2(i,a,n) for(int i=(a);i<(n);++i)#define for3(i,a,n) for(int i=(a);i>=(n);--i)#define for4(i,a,n) for(int i=(a);i>(n);--i)#define CC(i,a) memset(i,a,sizeof(i))#define read(a) a=getint()#define print(a) printf("%d", a)#define dbg(x) cout << (#x) << " = " << (x) << endl#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }#define printarr1(a, b) for1(_, 1, b) cout << a[_] << ‘\t‘; cout << endlinline const int getint() { int r=0, k=1; char c=getchar(); for(; c<‘0‘||c>‘9‘; c=getchar()) if(c==‘-‘) k=-1; for(; c>=‘0‘&&c<=‘9‘; c=getchar()) r=r*10+c-‘0‘; return k*r; }inline const int max(const int &a, const int &b) { return a>b?a:b; }inline const int min(const int &a, const int &b) { return a<b?a:b; }const int N=1005, M=1000005;int ihead[N], n, m, cnt, LL[N], FF[N], mp[N][N], tot, s[M<<1], top, vis[N], ok[N], col[N];struct ED { int from, to, next; } e[M<<1];void add(int u, int v) { e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v; e[cnt].from=u; e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u; e[cnt].from=v;}bool ifind(int u) { int v; for(int i=ihead[u]; i; i=e[i].next) if(vis[v=e[i].to]) { if(col[v]==-1) { col[v]=!col[u]; return ifind(v); } else if(col[v]==col[u]) return true; } return false;}void color(int x) { int y, u=e[x].from; CC(vis, 0); CC(col, -1); col[u]=0; do { y=s[top--]; vis[e[y].from]=vis[e[y].to]=1; } while(y!=x); if(ifind(u)) for1(i, 1, n) if(vis[i]) ok[i]=1;}void tarjan(int u, int fa) { FF[u]=LL[u]=++tot; for(int i=ihead[u]; i; i=e[i].next) if(fa!=e[i].to) { int v=e[i].to; if(!FF[v]) { s[++top]=i; //入栈这里要注意。。不要在上边入栈。。 tarjan(v, u); if(LL[v]>=FF[u]) color(i); LL[u]=min(LL[u], LL[v]); } else if(LL[u]>FF[v]) s[++top]=i, LL[u]=FF[v]; //入栈这里要注意。。 }}int main() { while(1) { read(n); read(m); int ans=0; if(n==0 && m==0) break; CC(mp, 0); CC(ihead, 0); CC(LL, 0); CC(FF, 0); CC(ok, 0); top=cnt=tot=0; rep(i, m) { int u=getint(), v=getint(); mp[u][v]=mp[v][u]=1; } for1(i, 1, n) for1(j, i+1, n) if(!mp[i][j]) add(i, j); for1(i, 1, n) if(!FF[i]) tarjan(i, -1); for1(i, 1, n) if(!ok[i]) ++ans; printf("%d\n", ans); } return 0;}
Description
Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, and drinking with the other knights are fun things to do. Therefore, it is not very surprising that in recent years the kingdom of King Arthur has experienced an unprecedented increase in the number of knights. There are so many knights now, that it is very rare that every Knight of the Round Table can come at the same time to Camelot and sit around the round table; usually only a small group of the knights isthere, while the rest are busy doing heroic deeds around the country.
Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:
Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:
- The knights should be seated such that two knights who hate each other should not be neighbors at the table. (Merlin has a list that says who hates whom.) The knights are sitting around a roundtable, thus every knight has exactly two neighbors.
- An odd number of knights should sit around the table. This ensures that if the knights cannot agree on something, then they can settle the issue by voting. (If the number of knights is even, then itcan happen that ``yes" and ``no" have the same number of votes, and the argument goes on.)
Input
The input contains several blocks of test cases. Each case begins with a line containing two integers 1 ≤ n ≤ 1000 and 1 ≤ m ≤ 1000000 . The number n is the number of knights. The next m lines describe which knight hates which knight. Each of these m lines contains two integers k1 and k2 , which means that knight number k1 and knight number k2 hate each other (the numbers k1 and k2 are between 1 and n ).
The input is terminated by a block with n = m = 0 .
The input is terminated by a block with n = m = 0 .
Output
For each test case you have to output a single integer on a separate line: the number of knights that have to be expelled.
Sample Input
5 51 41 52 53 44 50 0
Sample Output
2
Hint
Huge input file, ‘scanf‘ recommended to avoid TLE.
Source
Central Europe 2005
【POJ】2942 Knights of the Round Table(双连通分量)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。