首页 > 代码库 > UVA 1364 - Knights of the Round Table(双连通+二分图判定)
UVA 1364 - Knights of the Round Table(双连通+二分图判定)
UVA 1364 - Knights of the Round Table
题目链接
题意:有n个圆桌骑士,知道一些骑士互相憎恨,现在要开圆桌会议,每次最少3个人,必须是奇数人数,并且互相憎恨的骑士不能在相邻,问有多少骑士是一次都无法参加的
思路:把每个骑士可以相邻的连边,然后做双连通分量,然后对于每个连通分量,利用二分图染色判定去判断是否是奇圈
代码:
#include <cstdio> #include <cstring> #include <vector> #include <stack> using namespace std; const int N = 1005; struct Edge { int u, v; Edge() {} Edge(int u, int v) { this->u = u; this->v = v; } }; int pre[N], bccno[N], dfs_clock, bcc_cnt; bool iscut[N]; vector<int> g[N], bcc[N]; stack<Edge> S; int dfs_bcc(int u, int fa) { int lowu = pre[u] = ++dfs_clock; int child = 0; for (int i = 0; i < g[u].size(); i++) { int v = g[u][i]; Edge e = Edge(u, v); if (!pre[v]) { S.push(e); child++; int lowv = dfs_bcc(v, u); lowu = min(lowu, lowv); if (lowv >= pre[u]) { iscut[u] = true; bcc_cnt++; bcc[bcc_cnt].clear(); //start from 1 while(1) { Edge x = S.top(); S.pop(); if (bccno[x.u] != bcc_cnt) {bcc[bcc_cnt].push_back(x.u); bccno[x.u] = bcc_cnt;} if (bccno[x.v] != bcc_cnt) {bcc[bcc_cnt].push_back(x.v); bccno[x.v] = bcc_cnt;} if (x.u == u && x.v == v) break; } } } else if (pre[v] < pre[u] && v != fa) { S.push(e); lowu = min(lowu, pre[v]); } } if (fa < 0 && child == 1) iscut[u] = false; return lowu; } void find_bcc(int n) { memset(pre, 0, sizeof(pre)); memset(iscut, 0, sizeof(iscut)); memset(bccno, 0, sizeof(bccno)); dfs_clock = bcc_cnt = 0; for (int i = 0; i < n; i++) if (!pre[i]) dfs_bcc(i, -1); } int odd[N], color[N]; bool bipartite(int u, int b) { for (int i = 0; i < g[u].size(); i++) { int v = g[u][i]; if (bccno[v] != b) continue; if (color[v] == color[u]) return false; if (!color[v]) { color[v] = 3 - color[u]; if (!bipartite(v, b)) return false; } } return true; } int n, m, A[N][N]; int main() { int cas = 0; while (~scanf("%d%d", &n, &m) && n) { for (int i = 0; i < n; i++) g[i].clear(); memset(A, 0, sizeof(A)); for (int i = 0; i < m; i++) { int u, v; scanf("%d%d", &u, &v); u--; v--; A[u][v] = A[v][u] = 1; } for (int u = 0; u < n; u++) { for (int v = u + 1; v < n; v++) if (!A[u][v]) { g[u].push_back(v); g[v].push_back(u); } } find_bcc(n); memset(odd, 0, sizeof(odd)); for (int i = 1; i <= bcc_cnt; i++) { memset(color, 0, sizeof(color)); for (int j = 0; j < bcc[i].size(); j++) bccno[bcc[i][j]] = i; int u = bcc[i][0]; color[u] = 1; if (!bipartite(u, i)) { for (int j = 0; j < bcc[i].size(); j++) odd[bcc[i][j]] = 1; } } int ans = n; for (int i = 0; i < n; i++) ans -= odd[i]; printf("%d\n", ans); } return 0; }
UVA 1364 - Knights of the Round Table(双连通+二分图判定)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。