首页 > 代码库 > 全排列问题的递归算法(Perm)
全排列问题的递归算法(Perm)
【题目】设计一个递归算法生成n个元素{r1,r2,…,rn}的全排列。
【算法讲解】
设R={r1,r2,…,rn}是要进行排列的n个元素,Ri=R-{ri}。
集合X中元素的全排列记为perm(X)。
(ri)perm(X)表示在全排列perm(X)的每一个排列前加上前缀得到的排列。
R的全排列可归纳定义如下:
当n=1时,perm(R)=(r),其中r是集合R中唯一的元素;
当n>1时,perm(R)由(r1)perm(R1),(r2)perm(R2),…,(rn)perm(Rn)构成。
实现思想:将整组数中的所有的数分别与第一个数交换,这样就总是在处理后n-1个数的全排列。
【示例】
当n=3,并且E={a,b,c},则:
perm(E)=a.perm({b,c}) + b.perm({a,c}) + c.perm({a,b})
perm({b,c})=b.perm(c) + c.perm(b)
a.perm({b,c})=ab.perm(c) + ac.perm(b)
=ab.c + ac.b=(abc, acb)
【核心代码】
template<class Type> void Perm(Type list[], int k, int m ) { //产生[list[k:m]的所有排列 if(k==m) { //只剩下一个元素 for (int i=0;i<=m;i++) cout<<list[i]; cout<<endl; } else //还有多个元素待排列,递归产生排列 for (int i=k; i<=m; i++) { swap(list[k],list[i]); Perm(list,k+1,m); swap(list[k],list[i]); } }
【完整代码】
#include <iostream> #include <algorithm> using namespace std; template<class Type> void Perm(Type list[], int k, int m ) { //产生[list[k:m]的所有排列 if(k==m) { //只剩下一个元素 for (int i=0;i<=m;i++) cout<<list[i]; cout<<endl; } else //还有多个元素待排列,递归产生排列 for (int i=k; i<=m; i++) { swap(list[k],list[i]); Perm(list,k+1,m); swap(list[k],list[i]); } } int main() { char s[]="abc"; Perm(s,0,2); return 0; }
全排列问题的递归算法(Perm)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。