首页 > 代码库 > 51Nod 1091 线段的重叠(贪心+区间相关,板子题)
51Nod 1091 线段的重叠(贪心+区间相关,板子题)
1091 线段的重叠
基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题
X轴上有N条线段,每条线段包括1个起点和终点。线段的重叠是这样来算的,[10 20]和[12 25]的重叠部分为[12 20]。
给出N条线段的起点和终点,从中选出2条线段,这两条线段的重叠部分是最长的。输出这个最长的距离。如果没有重叠,输出0。
Input
第1行:线段的数量N(2 <= N <= 50000)。第2 - N + 1行:每行2个数,线段的起点和终点。(0 <= s , e <= 10^9)
Output
输出最长重复区间的长度。
Input示例
51 52 42 83 77 9
Output示例
4
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1091
分析:
这道题对初学者看似很复杂,其实认真分析就会发现很简单。。
(下面结合例子分析一下)(本人非常弱,大神莫见笑)
首先: 先将输入的区间起点按升序排序,若起点相同则按终点降序排序
比如5组区间:(1 5)(2 4)(2 8)(3 7)(7 9)
按上面所述排序: (1 5) (2 8) (2 4) (3 7) (7 9)
这样很直观,为什么要起点升序,起点相同则按终点降序排序
起点升序很容易理解,我们要找区间覆盖最大长度。
起点相同则按终点降序排序 明显(1 5) (2 8) 区间覆盖长度大于 (1 5) (2 4) (别忘了这可是一道贪心算法题,从最接近最优解出发)
接下来考录主要考虑两个方面: 1区间覆盖
2区间包含跟不包含(一起处理)
(应该选定一个参考区间)
1 区间覆盖: 直接是小区间的距离(2 8)(2 4) 直接是4-2=2;
2 区间包含跟不包含: 区间包含,就是第一个区间终点跟第二个区间起点的差值,eg: (1 5) (2 8) 即5-2=3
假如(1 5)是参考区间,那么比较完(1 5) (2 8)。参考区间应该为下一个区间,即(2 8).
因为后面的区间起始点都不比(2 8)小(起点升序)。又因为区间包含,就是第一个区间终点跟第二个区间起点的差值。
那么后面的区间跟(1 5)区间覆盖长度都没有比(2 8)区间覆盖长度大。。显然的,说起来很绕。所以这时再以(1 5)作为参考区间没有意义了。
为方便起见,就选取下一个区间作为参考区间,即(2 8).
总结一下:
1.先将输入的区间起点按升序排序,若起点相同则按终点降序排序
2.分两部分处理:区间覆盖 区间包含跟不包含
下面给出AC代码:
1 #include <bits/stdc++.h> 2 using namespace std; 3 const int maxn=50010; 4 struct node 5 { 6 int start,end; 7 }p[maxn]; 8 int ans=0; 9 int n;10 bool cmp(node x,node y)11 {12 if(x.start<y.start)13 return true;14 if(x.start==y.start&&x.end>y.end)15 return true;16 return false;17 }18 int main()19 {20 scanf("%d",&n);21 for(int i=0;i<n;i++)22 scanf("%d%d",&p[i].start,&p[i].end);23 sort(p,p+n,cmp);//起点升序 若起点相同,终点降序24 node m=p[0];25 for(int i=1;i<n;i++)26 {27 if(p[i].end<=m.end)//区间覆盖28 ans=max(ans,p[i].end-p[i].start);29 else30 {31 ans=max(ans,m.end-p[i].start);//覆盖跟不覆盖 32 m=p[i];//更新前一个区间33 }34 }35 printf("%d\n",ans);36 return 0;37 }
51Nod 1091 线段的重叠(贪心+区间相关,板子题)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。