首页 > 代码库 > LeetCode:LRU cache

LeetCode:LRU cache

题目:LRU cache

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

LRU是一种应用在操作系统上的缓存替换策略,和我们常见的FIFO算法一样,都是用于操作系统中内存管理中的页面替换,其全称叫做Least Recently Used(近期最少使用算法),算法主要是根据数据的历史访问记录来进行数据的淘汰,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。

LRU算法设计

数据结构的选择:因为涉及到数据元素的查找,删除,替换,移动等操作,所以我们选择列表来进行数据的存储,为了考虑时间复杂度,我们分析一下,单链表插入删除操作的时间复杂度为O(n),双链表为O(1),所以,首选肯定是双链表,另外,元素的查找操作,map的查找效率为O(lgn),首选应该是map,但还有一个hashmap,能够达到O(1)的查找效率,我们后面再编程的时候都试一下这几种方法,看看其能不能通过编译,通过了时间又是多少?

为了能够比较形象的了解LRU的执行过程,我们举一个例子,如下:

假定现有一进程的页面访问序列为:

4,7,0,7,1,0,1,2,1,2,6

缓存容量为5,则随着进程的访问,缓存栈中页面号的变化情况如下图所示。在访问页面6时发生了缺页,此时页面4是最近最久未被访问的页,应将它置换出去。

在算法实现时,我们可以把最近最久没有使用的数据放在链表的最后,当缓存空间满时(即发生缺页),直接将最后一个数据淘汰即可,同时,如果一个数据发生命中,或者新来一个数据,我们都将该数据移到链表的头部,这样就能保证在链表头部的数据都是最近访问过的,而链表后面的数据就是最近最久没有访问过的。如下所示:

代码实现,为了验证上面所提出数据结构是否能通过LeetCode的编译,我们都实现一遍,下面是single list+map的实现,时间复杂度为O(n)+O(lgn),开始我还以为通过不了,最后还是通过了,耗时大约900ms。

/************************************************************************//* 单链表版本                                                                    /************************************************************************/struct Node {    int        m_nKey;    int        m_nValue;    Node*    m_pNext;};class LRUCache {public:    LRUCache(int capacity) {        m_nSize        = capacity;        m_nCount    = 0;        m_lruList    = NULL;    }    int get(int key) {        if (NULL == m_lruList)             return -1;        map<int, Node *>::iterator it = m_lruMap.find(key);        if (it == m_lruMap.end()) //没有找到            return -1;        else {            Node *p = it->second;            //把节点移到链表的开头            pushFront(p);        }        return m_lruList->m_nValue;    }    void set(int key, int value) {        if (NULL == m_lruList) {            m_lruList = new Node();            m_lruList->m_nKey = key;            m_lruList->m_nValue =http://www.mamicode.com/ value;            m_lruList->m_pNext = NULL;            m_nCount ++;            m_lruMap[key] = m_lruList;        }        else {            map<int, Node *>::iterator it = m_lruMap.find(key);            if (it == m_lruMap.end()){ //没有命中,将链表的最后一个节点删除                if (m_nSize == m_nCount) { //cache已满                    Node *pHead = m_lruList;                    Node *pTemp = pHead;                    while(pHead->m_pNext != NULL) {                        pTemp = pHead;                        pHead = pHead->m_pNext;                    }                    m_lruMap.erase(pHead->m_nKey);                    m_nCount --;                    if (pHead == pTemp) //只有一个节点                        pHead = NULL;                    else                        pTemp->m_pNext = NULL;                }                Node *p = new Node(); //插入新的节点于头部                p->m_nKey = key;                p->m_nValue =http://www.mamicode.com/ value;                p->m_pNext = m_lruList;                m_lruList = p;                m_lruMap[key] = m_lruList;                m_nCount ++;            }            else { //命中,则将该命中的节点移至链表头部                Node *pCur = it->second;                pCur->m_nValue =http://www.mamicode.com/ value;                pushFront(pCur);            }        }    }    void pushFront(Node *pCur) {  //把节点移动到链表头部,时间复杂度O(n)        if (NULL == pCur)             return;        if (m_nCount == 1 || pCur == m_lruList)             return;        Node *pHead = m_lruList;        while (pHead->m_pNext != pCur)             pHead = pHead->m_pNext;        pHead->m_pNext = pCur->m_pNext;        pCur->m_pNext = m_lruList;        m_lruList = pCur;    }    void printCache() {        Node *p = m_lruList;        while (p) {            cout << p->m_nKey << ":" << p->m_nValue << " ";            p = p->m_pNext;        }    }private:    int                    m_nSize;    int                    m_nCount;    map<int, Node *>    m_lruMap;    Node*                m_lruList;};

 

下面是double list+map版本,时间复杂度为O(1)+O(lgn),耗时大约300s

  1 /************************************************************************/  2 /* 双链表版本                                                                     3 /************************************************************************/  4 struct Node {  5     int        m_nKey;  6     int        m_nValue;  7     Node*    m_pNext;  8     Node*   m_pPre;  9 }; 10  11 class LRUCache { 12 public: 13     LRUCache(int capacity) { 14         m_nSize            = capacity; 15         m_nCount        = 0; 16         m_lruListHead    = NULL; 17         m_lruListTail    = NULL; 18     } 19  20     int get(int key) { 21         if (NULL == m_lruListHead)  22             return -1; 23         map<int, Node *>::iterator it = m_lruMap.find(key); 24         if (it == m_lruMap.end()) //没有找到 25             return -1; 26         else { 27             Node *p = it->second; 28             //把节点移到链表的开头 29             pushFront(p); 30         } 31         return m_lruListHead->m_nValue; 32     } 33  34     void set(int key, int value) { 35         if (NULL == m_lruListHead) { 36             m_lruListHead = new Node(); 37             m_lruListHead->m_nKey = key; 38             m_lruListHead->m_nValue =http://www.mamicode.com/ value; 39             m_lruListHead->m_pNext = NULL; 40             m_lruListHead->m_pPre = NULL; 41             m_lruListTail = m_lruListHead; 42             m_nCount ++; 43             m_lruMap[key] = m_lruListHead; 44         } 45         else { 46             map<int, Node *>::iterator it = m_lruMap.find(key); 47             if (it == m_lruMap.end()){ //没有命中,将链表的最后一个节点删除 48                 if (m_nSize == m_nCount) { //cache已满 49                     if (m_lruListHead == m_lruListTail) {//只有一个节点 50                         m_lruMap.erase(m_lruListHead->m_nKey); 51                         m_lruListHead->m_nKey = key; 52                         m_lruListHead->m_nValue =http://www.mamicode.com/ value; 53                         m_lruMap[key] = m_lruListHead; 54                     } 55                     else { 56                         Node *p = m_lruListTail; 57                         m_lruListTail->m_pPre->m_pNext = NULL; 58                         m_lruListTail = m_lruListTail->m_pPre; 59                         m_lruMap.erase(p->m_nKey); 60  61                         p->m_nKey = key; 62                         p->m_nValue =http://www.mamicode.com/ value; 63                         p->m_pNext = m_lruListHead; 64                         p->m_pPre = NULL; 65                         m_lruListHead->m_pPre = p; 66                         m_lruListHead = p; 67                         m_lruMap[key] = m_lruListHead; 68                     } 69                 } 70                 else { 71                     Node *p = new Node(); //插入新的节点于头部 72                     p->m_nKey = key; 73                     p->m_nValue =http://www.mamicode.com/ value; 74                     p->m_pNext = m_lruListHead; 75                     p->m_pPre = NULL; 76                     m_lruListHead->m_pPre = p; 77                     m_lruListHead = p; 78                     m_lruMap[key] = m_lruListHead; 79                     m_nCount ++; 80                 } 81             } 82             else { //命中,则将该命中的节点移至链表头部 83                 Node *pCur = it->second; 84                 pCur->m_nValue =http://www.mamicode.com/ value; 85                 pushFront(pCur); 86             } 87         } 88     } 89  90     void pushFront(Node *pCur) {  //把节点移动到链表头部,时间复杂度O(1) 91         if (NULL == pCur)  92             return; 93         if (m_nCount == 1 || pCur == m_lruListHead)  94             return; 95         if (pCur == m_lruListTail) { //假如是尾节点 96             pCur->m_pPre->m_pNext = NULL; 97             pCur->m_pNext = m_lruListHead; 98             m_lruListTail = pCur->m_pPre; 99             m_lruListHead->m_pPre = pCur;100             m_lruListHead = pCur;101         }102         else {103             pCur->m_pPre->m_pNext = pCur->m_pNext;104             pCur->m_pNext->m_pPre = pCur->m_pPre;105 106             pCur->m_pNext = m_lruListHead;107             m_lruListHead->m_pPre = pCur;108             m_lruListHead = pCur;109         }110     }111 112     void printCache() {113         Node *p = m_lruListHead;114         while (p) {115             cout << p->m_nKey << ":" << p->m_nValue << " ";116             p = p->m_pNext;117         }118     }119 120 private:121     int                    m_nSize;122     int                    m_nCount;123     map<int, Node *>    m_lruMap;124     Node*                m_lruListHead;125     Node*                m_lruListTail;126 };

下面是hashmap+list版本,如果是C++,list和hashmap都是STL自带的功能实现,所以,我们直接应用STL库,代码量大大减少,时间复杂度为O(1).^-^代码参考:dancingrain

#include <iostream>#include <hash_map>#include <list>#include <utility>using namespace std;using namespace stdext;class LRUCache{public:    LRUCache(int capacity) {        m_capacity = capacity ;    }    int get(int key) {        int retValue = http://www.mamicode.com/-1 ;        hash_map<int, list<pair<int, int> > :: iterator> ::iterator it = cachesMap.find(key) ;        //如果在Cashe中,将记录移动到链表的最前端        if (it != cachesMap.end())        {            retValue = it ->second->second ;            //移动到最前端            list<pair<int, int> > :: iterator ptrPair = it -> second ;            pair<int, int> tmpPair = *ptrPair ;            caches.erase(ptrPair) ;            caches.push_front(tmpPair) ;            //修改map中的值            cachesMap[key] = caches.begin() ;        }        return retValue ;    }    void set(int key, int value) {        hash_map<int, list<pair<int, int> > :: iterator> ::iterator it = cachesMap.find(key) ;        if (it != cachesMap.end()) //已经存在其中        {            list<pair<int, int> > :: iterator ptrPait = it ->second ;            ptrPait->second = value ;            //移动到最前面            pair<int , int > tmpPair = *ptrPait ;            caches.erase(ptrPait) ;            caches.push_front(tmpPair) ;            //更新map            cachesMap[key] = caches.begin() ;        }        else //不存在其中        {            pair<int , int > tmpPair = make_pair(key, value) ;            if (m_capacity == caches.size()) //已经满            {                int delKey = caches.back().first ;                caches.pop_back() ; //删除最后一个                //删除在map中的相应项                hash_map<int, list<pair<int, int> > :: iterator> ::iterator delIt = cachesMap.find(delKey) ;                cachesMap.erase(delIt) ;            }            caches.push_front(tmpPair) ;            cachesMap[key] = caches.begin() ; //更新map        }    }private:    int m_capacity ;                                               //cashe的大小    list<pair<int, int> > caches ;                                 //用一个双链表存储cashe的内容    hash_map< int, list<pair<int, int> > :: iterator> cachesMap ;  //使用map加快查找的速度};

 

LeetCode:LRU cache