首页 > 代码库 > 计算几何模板
计算几何模板
%%%% orz
邝斌的计算几何模板:
#pragma comment(linker, "/STACK:1024000000,1024000000")#include<iostream>#include<cstdio>#include<cmath>#include<string>#include<queue>#include<algorithm>#include<stack>#include<cstring>#include<vector>#include<list>#include<set>#include<map>using namespace std;#define ll long long#define bug(x) cout<<"bug"<<x<<endl;const int N=1e5+10,M=1e6+10,inf=2147483647;const ll INF=1e18+10,mod=2147493647;const double eps = 1e-8;const double PI = acos(-1.0);int sgn(double x){ if(fabs(x) < eps)return 0; if(x < 0)return -1; else return 1;}struct Point{ double x,y; Point() {} Point(double _x,double _y) { x = _x; y = _y; } Point operator -(const Point &b)const { return Point(x - b.x,y - b.y); } //叉积 double operator ^(const Point &b)const { return x*b.y - y*b.x; }//点积 double operator *(const Point &b)const { return x*b.x + y*b.y; }//绕原点旋转角度B(弧度值),后x,y的变化 void transXY(double B) { double tx = x,ty = y; x= tx*cos(B) - ty*sin(B); y= tx*sin(B) + ty*cos(B); }};struct Line{ Point s,e; Line() {} Line(Point _s,Point _e) { s = _s; e = _e; }//两直线相交求交点 //第一个值为0表示直线重合,为1表示平行,为0表示相交,为2是相交 //只有第一个值为2时,交点才有意义 pair<int,Point> operator &(const Line &b)const { Point res = s; if(sgn((s-e)^(b.s-b.e)) == 0) { if(sgn((s-b.e)^(b.s-b.e)) == 0) return make_pair(0,res);//重合 else return make_pair(1,res);//平行 } double t = ((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e)); res.x += (e.x-s.x)*t; res.y += (e.y-s.y)*t; return make_pair(2,res); }};//*两点间距离double dist(Point a,Point b){ return sqrt((a-b)*(a-b));}// *判断线段相交bool inter(Line l1,Line l2){ return max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) && max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) && max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) && max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) && sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e)) <= 0 && sgn((l1.s-l2.e)^(l2.s-l2.e))*sgn((l1.e-l2.e)^(l2.s-l2.e)) <= 0;}//判断直线l1和线段l2是否相交bool Seg_inter_line(Line l1,Line l2){ return sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e)) <= 0;}//点到直线距离 //返回为result,是点到直线最近的点Point PointToLine(Point P,Line L){ Point result; double t = ((P-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s)); result.x = L.s.x + (L.e.x-L.s.x)*t; result.y = L.s.y + (L.e.y-L.s.y)*t; return result;}//点到线段的距离//返回点到线段最近的点Point NearestPointToLineSeg(Point P,Line L){ Point result; double t = ((P-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s)); if(t >= 0 && t <= 1) { result.x = L.s.x + (L.e.x - L.s.x)*t; result.y = L.s.y + (L.e.y - L.s.y)*t; } else { if(dist(P,L.s) < dist(P,L.e)) result = L.s; else result = L.e; } return result;}//计算多边形面积//点的编号从0~n-1double CalcArea(Point p[],int n){ double res = 0; for(int i = 0; i < n; i++) res += (p[i]^p[(i+1)%n])/2; return fabs(res);}//*判断点在线段上bool OnSeg(Point P,Line L){ return sgn((L.s-P)^(L.e-P)) == 0 && sgn((P.x - L.s.x) * (P.x - L.e.x)) <= 0 && sgn((P.y - L.s.y) * (P.y - L.e.y)) <= 0;}//*判断点在凸多边形内//点形成一个凸包,而且按逆时针排序(如果是顺时针把里面的<0改为>0) //点的编号:0~n-1//返回值://-1:点在凸多边形外//0:点在凸多边形边界上//1:点在凸多边形内int inConvexPoly(Point a,Point p[],int n){ for(int i = 0; i < n; i++) { if(sgn((p[i]-a)^(p[(i+1)%n]-a)) < 0)return -1; else if(OnSeg(a,Line(p[i],p[(i+1)%n])))return 0; } return 1;}//*判断点在任意多边形内//射线法,poly[]的顶点数要大于等于3,点的编号0~n-1 //返回值//-1:点在凸多边形外//0:点在凸多边形边界上//1:点在凸多边形内int inPoly(Point p,Point poly[],int n){ int cnt; Line ray,side; cnt = 0; ray.s = p; ray.e.y = p.y; ray.e.x = -100000000000.0;//-INF,注意取值防止越界 for(int i = 0; i < n; i++) { side.s = poly[i]; side.e = poly[(i+1)%n]; if(OnSeg(p,side))return 0;//如果平行轴则不考虑 if(sgn(side.s.y - side.e.y) == 0) continue; if(OnSeg(side.s,ray)) { if(sgn(side.s.y - side.e.y) > 0)cnt++; } else if(OnSeg(side.e,ray)) { if(sgn(side.e.y - side.s.y) > 0)cnt++; } else if(inter(ray,side)) cnt++; } if(cnt % 2 == 1)return 1; else return -1;}//判断凸多边形 //允许共线边//点可以是顺时针给出也可以是逆时针给出//点的编号1~n-1bool isconvex(Point poly[],int n){ bool s[3]; memset(s,false,sizeof(s)); for(int i = 0; i < n; i++) { s[sgn( (poly[(i+1)%n]-poly[i])^(poly[(i+2)%n]-poly[i]) )+1] = true; if(s[0] && s[2])return false; } return true;}/*0求凸包,Graham算法0点的编号0~n-10返回凸包结果Stack[0~top-1]为凸包的编号 */const int MAXN = 1010;Point listt[MAXN];int Stack[MAXN],top; //相对于listt[0]的极角排序bool _cmp(Point p1,Point p2){ double tmp = (p1-listt[0])^(p2-listt[0]); if(sgn(tmp) > 0)return true; else if(sgn(tmp) == 0 && sgn(dist(p1,listt[0]) - dist(p2,listt[0])) <= 0) return true; else return false;}void Graham(int n){ Point p0; int k = 0; p0 = listt[0]; //找最下边的一个点 for(int i = 1; i < n; i++) { if( (p0.y > listt[i].y) || (p0.y == listt[i].y && p0.x > listt[i].x) ) { p0 = listt[i]; k = i; } } swap(listt[k],listt[0]); sort(listt+1,listt+n,_cmp); if(n == 1) { top = 1; Stack[0] = 0; return; } if(n == 2) { top = 2; Stack[0] = 0; Stack[1] = 1; return ; } Stack[0] = 0; Stack[1] = 1; top = 2; for(int i = 2; i < n; i++) { while(top > 1 && sgn((listt[Stack[top-1]]-listt[Stack[top-2]])^(listt[i]-listt[Stack[top-2]])) <= 0) top--; Stack[top++] = i; }}int main(){ return 0;}
计算几何模板
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。