首页 > 代码库 > harris 算法的python实现
harris 算法的python实现
harris 作为最常用的特征点检测算法。
第一个文件harris.py
<pre name="code" class="python">from scipy.ndimage import filters from numpy import * from pylab import * def compute_harris_response(im,sigma=3): imx=zeros(im.shape)#计算导数 filters.gaussian_filter(im,(sigma,sigma),(0,1),imx) imy=zeros(im.shape) filters.gaussian_filter(im,(sigma,sigma),(1,0),imy) Wxx=filters.gaussian_filter(imx*imx,sigma) #计算harris矩阵分量 Wxy=filters.gaussian_filter(imx*imy,sigma) Wyy=filters.gaussian_filter(imy*imy,sigma) Wdet=Wxx*Wyy-Wxy**2 #计算矩阵的特征值和迹 Wtr=Wxx+Wyy return Wdet/Wtr def get_harris_points(harrisim,min_dist=10,threshold=0.1): conner_threshold=harrisim.max()*threshold harrisim_t=(harrisim>conner_threshold)*1 coords=array(harrisim_t.nonzero()).T candidate_values=[harrisim[c[0],c[1]] for c in coords] index=argsort(candidate_values) allowed_locations=zeros(harrisim.shape) allowed_locations[min_dist:-min_dist,min_dist:-min_dist]=1 filtered_coords=[] for i in index: if allowed_locations[coords[i,0],coords[i,1]]==1: filtered_coords.append(coords[i]) allowed_locations[(coords[i,0]-min_dist):(coords[i,0]+min_dist),(coords[i,1]-min_dist):(coords[i,1]+min_dist)]=0#此处保证min_dist*min_dist只有一个harris特征点 return filtered_coords def plot_harris_points(image,filtered_coords): figure() gray() imshow(image) plot([p[1] for p in filtered_coords],[p[0]for p in filtered_coords],'+') axis('off') show()
第二个文件测试算法
from PIL import Image from numpy import * import harris from pylab import * from scipy.ndimage import filters im=array(Image.open('33.jpg').convert('L')) harrisim=harris.compute_harris_response(im) filtered_coords=harris.get_harris_points(harrisim) harris.plot_harris_points(im,filtered_coords)
harris 算法的python实现
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。