首页 > 代码库 > poj 2096 Collecting Bugs (概率dp 天数期望)
poj 2096 Collecting Bugs (概率dp 天数期望)
题目链接
题意:
一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcomponent,问他找到所有的bugs和subcomponents的期望次数。
分析:
期望倒着推,概率正着推。
dp[i][j]表示已经找到i种bug,并存在于j个子系统中,要达到目标状态的天数的期望。
显然,dp[n][s]=0,因为已经达到目标了。而dp[0][0]就是我们要求的答案。
dp[i][j]状态可以转化成以下四种:
dp[i][j] 发现一个bug属于已经找到的i种bug和j个子系统中
dp[i+1][j] 发现一个bug属于新的一种bug,但属于已经找到的j种子系统
dp[i][j+1] 发现一个bug属于已经找到的i种bug,但属于新的子系统
dp[i+1][j+1]发现一个bug属于新的一种bug和新的一个子系统
以上四种的概率分别为:
p1 = i*j / (n*s)
p2 = (n-i)*j / (n*s)
p3 = i*(s-j) / (n*s)
p4 = (n-i)*(s-j) / (n*s)
又有:期望可以分解成多个子期望的加权和,权为子期望发生的概率,即 E(aA+bB+...) = aE(A) + bE(B) +...
所以:
dp[i,j] = p1*dp[i,j] + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] + 1;
整理得:
dp[i,j] = ( 1 + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] )/( 1-p1 ) //这个式子相当于( 1 + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] )/( 1-p1 )
// +0*p1.
= ( n*s + (n-i)*j*dp[i+1,j] + i*(s-j)*dp[i,j+1] + (n-i)*(s-j)*dp[i+1,j+1] )/( n*s - i*j )
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <cmath> 6 #include <algorithm> 7 #define LL __int64 8 const int maxn = 1000+10; 9 using namespace std;10 double d[maxn][maxn];11 12 int main()13 {14 int n, s, i, j;15 while(~scanf("%d%d", &n, &s))16 {17 memset(d, 0, sizeof(d));18 d[n][s] = 0;19 for(i = n; i >= 0; i--)20 for(j = s; j >= 0; j--)21 {22 if(i==n && j==s) continue;23 d[i][j] = (1 + d[i][j+1]*(i*1.0/n*(s-j)*1.0/s)+24 d[i+1][j]*(j*1.0/s*(n-i)*1.0/n)+25 d[i+1][j+1]*((n-i)*1.0/n*(s-j)*1.0/s))*1.0/(1.0-(i*j)*1.0/(n*s));26 //上面的式子是三种情况 和 最后乘的是为了达到i、j加一天的概率。27 //上面的递推式子简洁一点化简完是这样的:28 //dp[i][j]=(i*(s-j)*dp[i][j+1]+(n-i)*j*dp[i+1][j]+(n-i)*(s-j)*dp[i+1][j+1]+n*s)/(n*s-i*j);29 }30 printf("%.4f\n", d[0][0]);31 }32 return 0;33 }
贴一个很好的概率dp的分析(转载的链接):
近年的acm竞赛中,数学期望问题常有涉及,在以前也常让本人感到很头疼,近来突然开窍,掌握了基本的分析方法,希望对大家有帮助。写得浅薄,可能数学上不够严谨,只供理解。
首先,来看下期望有啥基本的公式。
对离散型随机变量x,其概率为p,有
对随机变量A、B,有
第二条式子是今天的主角,他表明了期望有线性的性质,简单理解就是期望之间可根据关系,简单运算(不严谨的理解)。 这就为我们解决一个期望问题,不断转化为解决另外的期望问题,最终转化到一个已知的期望上。
举一个求期望最简单的例子,见下图。
假设有个人在 1号节点处,每一分钟他会缘着边随机走到一个节点或者在原地停留,问他走到4号节点需要平均几分钟?
这是个简单的期望问题,我们用Ei(i=1,2,3,4) 表示从i号节点走到4号节点的数学期望值。根据题意对1号节点有
E1=(1/3)*E1+(1/3)*E2+(1/3)*E3+1 ①
表示 他下一分钟可以走到2或者3或在原地1,每个可能概率是1/3 ,注意是下一分钟,故要加上1.
同理我们对节点2,3同样可以列出
E2=(1/3)*E1+(1/3)*E2+(1/3)*E4+1 ②
E3=(1/3)*E1+(1/3)*E3+(1/3)*E4+1 ③
那E4等于多少呢? 很明显E4=0 ④,因为他就是要到点4
这样上面1234式其实就是组成了一组方程组,解方程组就可得出E1!!,用高斯消元,复杂度是O(n^3)
从上述例子,我们可总结出如何解决期望类问题,根据题意,表示出各个状态的期望(上例的Ei,1234),根据概率公式,列出期望之间的方程,解方程即可。
下面看用上述思路如何解决一道题(poj2096)
原题见附件1。
题意简述: 一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcomponent,问他找到所有的bugs和subcomponents的期望次数。
我们用E(i,j)表示他找到了i个bugs和j个subcomponents,离找到n个bugs和s个subcomponents还需要的期望次数,这样要求的就是E(0,0),而E(n,s)=0,对任意的E(i,j),1次查找4种情况,没发现任何新的bugs和subcomponents,发现一个新的bug,发现一个新的subcomponent,同时发现一个新的bug和subcomponent,用概率公式可得:
E(i,j)=1+(i*j/n/s)*E(i,j)+(i*(s-j)/n/s)E(i,j+1)+
((n-i)*j/n/s)*E(i+1,j)+(n-i)*(s-j)/n/s*E(i+1,j+1);
这样根据边界就可解出所有的E(i,j),注意因为当我们找到n个bugs和s个subcomponents就结束,对i>n||j>s均无解的情况,并非期望是0.(数学上常见问题,0和不存在的区别)
那这题是否也是要用高斯消元呢? 用高斯消元得话复杂度是O(n^3),达到10^18 根本是不可解的!!
但其实,注意观察方程,当我们要解E(i,j)的话就需要E(i+1,j),E(I,j+1),E(i+1,j+1), 一开始已知E(n,s),那其实只要我们从高往低一个个解出I,j就可以了! 即可根据递推式解出所有的E(I,j) 复杂度是O(n),10^6 ,完美解决。程序见附件2
从上面这道题,我们再次看到了解决期望问题的思路,而且是用到了递推解决问题,其实可递推的原因,当我们把各个状态当成是一个个节点时,概率关系为有向边,我们可看到,可递推的问题其实就是这个关系图是无环的!!那必须要用方程组解决的问题其实就是存在环!!!! 而且我还要指出的是用高斯消元的时候,要注意误差的问题,最好把式子适当的增大,避免解小数,否则误差太大,估计也会卡题。
poj 2096 Collecting Bugs (概率dp 天数期望)