首页 > 代码库 > Java线程池使用和分析(二) - execute()原理
Java线程池使用和分析(二) - execute()原理
相关文章目录:
Java线程池使用和分析(一)
Java线程池使用和分析(二) - execute()原理
execute()是 java.util.concurrent.Executor接口中唯一的方法,JDK注释中的描述是“在未来的某一时刻执行命令command”,即向线程池中提交任务,在未来某个时刻执行,提交的任务必须实现Runnable接口,该提交方式不能获取返回值。下面是对execute()方法内部原理的分析,分析前先简单介绍线程池有哪些状态,在一系列执行过程中涉及线程池状态相关的判断。以下分析基于JDK 1.7
以下是本文的目录大纲:
一、线程池执行流程
二、线程池状态
三、任务提交内部原理
1、execute() -- 提交任务
2、addWorker() -- 添加worker线程
3、内部类Worker
4、runWorker() -- 执行任务
5、getTask() -- 获取任务
6、processWorkerExit() -- worker线程退出
一、线程池的执行流程
1、如果线程池中的线程数量少于corePoolSize,就创建新的线程来执行新添加的任务
2、如果线程池中的线程数量大于等于corePoolSize,但队列workQueue未满,则将新添加的任务放到workQueue中
3、如果线程池中的线程数量大于等于corePoolSize,且队列workQueue已满,但线程池中的线程数量小于maximumPoolSize,则会创建新的线程来处理被添加的任务
4、如果线程池中的线程数量等于了maximumPoolSize,就用RejectedExecutionHandler来执行拒绝策略
二、线程池状态
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));private static final int COUNT_BITS = Integer.SIZE - 3;private static final int CAPACITY = (1 << COUNT_BITS) - 1;// runState is stored in the high-order bitsprivate static final int RUNNING = -1 << COUNT_BITS;private static final int SHUTDOWN = 0 << COUNT_BITS;private static final int STOP = 1 << COUNT_BITS;private static final int TIDYING = 2 << COUNT_BITS;private static final int TERMINATED = 3 << COUNT_BITS;// Packing and unpacking ctlprivate static int runStateOf(int c) { return c & ~CAPACITY; }private static int workerCountOf(int c) { return c & CAPACITY; }private static int ctlOf(int rs, int wc) { return rs | wc; }
其中ctl这个AtomicInteger的功能很强大,其高3位用于维护线程池运行状态,低29位维护线程池中线程数量
1、RUNNING:-1<<COUNT_BITS,即高3位为1,低29位为0,该状态的线程池会接收新任务,也会处理在阻塞队列中等待处理的任务
2、SHUTDOWN:0<<COUNT_BITS,即高3位为0,低29位为0,该状态的线程池不会再接收新任务,但还会处理已经提交到阻塞队列中等待处理的任务
3、STOP:1<<COUNT_BITS,即高3位为001,低29位为0,该状态的线程池不会再接收新任务,不会处理在阻塞队列中等待的任务,而且还会中断正在运行的任务
4、TIDYING:2<<COUNT_BITS,即高3位为010,低29位为0,所有任务都被终止了,workerCount为0,为此状态时还将调用terminated()方法
5、TERMINATED:3<<COUNT_BITS,即高3位为100,低29位为0,terminated()方法调用完成后变成此状态
这些状态均由int型表示,大小关系为 RUNNING<SHUTDOWN<STOP<TIDYING<TERMINATED,这个顺序基本上也是遵循线程池从 运行 到 终止这个过程。
runStateOf(int c) 方法:c & 高3位为1,低29位为0的~CAPACITY,用于获取高3位保存的线程池状态
workerCountOf(int c)方法:c & 高3位为0,低29位为1的CAPACITY,用于获取低29位的线程数量
ctlOf(int rs, int wc)方法:参数rs表示runState,参数wc表示workerCount,即根据runState和workerCount打包合并成ctl
三、任务提交内部原理
1、execute() -- 提交任务
/** * Executes the given task sometime in the future. The task * may execute in a new thread or in an existing pooled thread. * 在未来的某个时刻执行给定的任务。这个任务用一个新线程执行,或者用一个线程池中已经存在的线程执行 * * If the task cannot be submitted for execution, either because this * executor has been shutdown or because its capacity has been reached, * the task is handled by the current {@code RejectedExecutionHandler}. * 如果任务无法被提交执行,要么是因为这个Executor已经被shutdown关闭,要么是已经达到其容量上限,任务会被当前的RejectedExecutionHandler处理 * * @param command the task to execute * @throws RejectedExecutionException at discretion of * {@code RejectedExecutionHandler}, if the task * cannot be accepted for execution RejectedExecutionException是一个RuntimeException * @throws NullPointerException if {@code command} is null */public void execute(Runnable command) { if (command == null) throw new NullPointerException(); /* * Proceed in 3 steps: * * 1. If fewer than corePoolSize threads are running, try to * start a new thread with the given command as its first * task. The call to addWorker atomically checks runState and * workerCount, and so prevents false alarms that would add * threads when it shouldn‘t, by returning false. * 如果运行的线程少于corePoolSize,尝试开启一个新线程去运行command,command作为这个线程的第一个任务 * * 2. If a task can be successfully queued, then we still need * to double-check whether we should have added a thread * (because existing ones died since last checking) or that * the pool shut down since entry into this method. So we * recheck state and if necessary roll back the enqueuing if * stopped, or start a new thread if there are none. * 如果任务成功放入队列,我们仍需要一个双重校验去确认是否应该新建一个线程(因为可能存在有些线程在我们上次检查后死了) 或者 从我们进入这个方法后,pool被关闭了 * 所以我们需要再次检查state,如果线程池停止了需要回滚入队列,如果池中没有线程了,新开启 一个线程 * * 3. If we cannot queue task, then we try to add a new * thread. If it fails, we know we are shut down or saturated * and so reject the task. * 如果无法将任务入队列(可能队列满了),需要新开区一个线程(自己:往maxPoolSize发展) * 如果失败了,说明线程池shutdown 或者 饱和了,所以我们拒绝任务 */ int c = ctl.get(); /** * 1、如果当前线程数少于corePoolSize(可能是由于addWorker()操作已经包含对线程池状态的判断,如此处没加,而入workQueue前加了) */ if (workerCountOf(c) < corePoolSize) { //addWorker()成功,返回 if (addWorker(command, true)) return; /** * 没有成功addWorker(),再次获取c(凡是需要再次用ctl做判断时,都会再次调用ctl.get()) * 失败的原因可能是: * 1、线程池已经shutdown,shutdown的线程池不再接收新任务 * 2、workerCountOf(c) < corePoolSize 判断后,由于并发,别的线程先创建了worker线程,导致workerCount>=corePoolSize */ c = ctl.get(); } /** * 2、如果线程池RUNNING状态,且入队列成功 */ if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get();//再次校验位 /** * 再次校验放入workerQueue中的任务是否能被执行 * 1、如果线程池不是运行状态了,应该拒绝添加新任务,从workQueue中删除任务 * 2、如果线程池是运行状态,或者从workQueue中删除任务失败(刚好有一个线程执行完毕,并消耗了这个任务),确保还有线程执行任务(只要有一个就够了) */ //如果再次校验过程中,线程池不是RUNNING状态,并且remove(command)--workQueue.remove()成功,拒绝当前command if (! isRunning(recheck) && remove(command)) reject(command); //如果当前worker数量为0,通过addWorker(null, false)创建一个线程,其任务为null //为什么只检查运行的worker数量是不是0呢?? 为什么不和corePoolSize比较呢?? //只保证有一个worker线程可以从queue中获取任务执行就行了?? //因为只要还有活动的worker线程,就可以消费workerQueue中的任务 else if (workerCountOf(recheck) == 0) addWorker(null, false); //第一个参数为null,说明只为新建一个worker线程,没有指定firstTask //第二个参数为true代表占用corePoolSize,false占用maxPoolSize } /** * 3、如果线程池不是running状态 或者 无法入队列 * 尝试开启新线程,扩容至maxPoolSize,如果addWork(command, false)失败了,拒绝当前command */ else if (!addWorker(command, false)) reject(command);}
execute(Runnable command)
参数:
command 提交执行的任务,不能为空
执行流程:
1、如果线程池当前线程数量少于corePoolSize,则addWorker(command, true)创建新worker线程,如创建成功返回,如没创建成功,则执行后续步骤;
addWorker(command, true)失败的原因可能是:
A、线程池已经shutdown,shutdown的线程池不再接收新任务
B、workerCountOf(c) < corePoolSize 判断后,由于并发,别的线程先创建了worker线程,导致workerCount>=corePoolSize
2、如果线程池还在running状态,将task加入workQueue阻塞队列中,如果加入成功,进行double-check,如果加入失败(可能是队列已满),则执行后续步骤;
double-check主要目的是判断刚加入workQueue阻塞队列的task是否能被执行
A、如果线程池已经不是running状态了,应该拒绝添加新任务,从workQueue中删除任务
B、如果线程池是运行状态,或者从workQueue中删除任务失败(刚好有一个线程执行完毕,并消耗了这个任务),确保还有线程执行任务(只要有一个就够了)
3、如果线程池不是running状态 或者 无法入队列,尝试开启新线程,扩容至maxPoolSize,如果addWork(command, false)失败了,拒绝当前command
2、addWorker() -- 添加worker线程
/** * Checks if a new worker can be added with respect to current * pool state and the given bound (either core or maximum). If so, * the worker count is adjusted accordingly, and, if possible, a * new worker is created and started, running firstTask as its * first task. This method returns false if the pool is stopped or * eligible to shut down. It also returns false if the thread * factory fails to create a thread when asked. If the thread * creation fails, either due to the thread factory returning * null, or due to an exception (typically OutOfMemoryError in * Thread#start), we roll back cleanly. * 检查根据当前线程池的状态和给定的边界(core or maximum)是否可以创建一个新的worker * 如果是这样的话,worker的数量做相应的调整,如果可能的话,创建一个新的worker并启动,参数中的firstTask作为worker的第一个任务 * 如果方法返回false,可能因为pool已经关闭或者调用过了shutdown * 如果线程工厂创建线程失败,也会失败,返回false * 如果线程创建失败,要么是因为线程工厂返回null,要么是发生了OutOfMemoryError * * @param firstTask the task the new thread should run first (or * null if none). Workers are created with an initial first task * (in method execute()) to bypass(绕开) queuing when there are fewer * than corePoolSize threads (in which case we always start one), * or when the queue is full (in which case we must bypass queue). * Initially idle threads are usually created via * prestartCoreThread or to replace other dying workers. * * @param core if true use corePoolSize as bound, else * maximumPoolSize. (A boolean indicator is used here rather than a * value to ensure reads of fresh values after checking other pool * state). * @return true if successful */private boolean addWorker(Runnable firstTask, boolean core) { //外层循环,负责判断线程池状态 retry: for (;;) { int c = ctl.get(); int rs = runStateOf(c); //状态 // Check if queue empty only if necessary. /** * 线程池的state越小越是运行状态,runnbale=-1,shutdown=0,stop=1,tidying=2,terminated=3 * 1、如果线程池state已经至少是shutdown状态了 * 2、并且以下3个条件任意一个是false * rs == SHUTDOWN (隐含:rs>=SHUTDOWN)false情况: 线程池状态已经超过shutdown,可能是stop、tidying、terminated其中一个,即线程池已经终止 * firstTask == null (隐含:rs==SHUTDOWN)false情况: firstTask不为空,rs==SHUTDOWN 且 firstTask不为空,return false,场景是在线程池已经shutdown后,还要添加新的任务,拒绝 * ! workQueue.isEmpty() (隐含:rs==SHUTDOWN,firstTask==null)false情况: workQueue为空,当firstTask为空时是为了创建一个没有任务的线程,再从workQueue中获取任务,如果workQueue已经为空,那么就没有添加新worker线程的必要了 * return false,即无法addWorker() */ if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; //内层循环,负责worker数量+1 for (;;) { int wc = workerCountOf(c); //worker数量 //如果worker数量>线程池最大上限CAPACITY(即使用int低29位可以容纳的最大值) //或者( worker数量>corePoolSize 或 worker数量>maximumPoolSize ),即已经超过了给定的边界 if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; //调用unsafe CAS操作,使得worker数量+1,成功则跳出retry循环 if (compareAndIncrementWorkerCount(c)) break retry; //CAS worker数量+1失败,再次读取ctl c = ctl.get(); // Re-read ctl //如果状态不等于之前获取的state,跳出内层循环,继续去外层循环判断 if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop // else CAS失败时因为workerCount改变了,继续内层循环尝试CAS对worker数量+1 } } /** * worker数量+1成功的后续操作 * 添加到workers Set集合,并启动worker线程 */ boolean workerStarted = false; boolean workerAdded = false; Worker w = null; try { final ReentrantLock mainLock = this.mainLock; w = new Worker(firstTask); //1、设置worker这个AQS锁的同步状态state=-1 //2、将firstTask设置给worker的成员变量firstTask //3、使用worker自身这个runnable,调用ThreadFactory创建一个线程,并设置给worker的成员变量thread final Thread t = w.thread; if (t != null) { mainLock.lock(); try { //--------------------------------------------这部分代码是上锁的 // Recheck while holding lock. // Back out on ThreadFactory failure or if // shut down before lock acquired. // 当获取到锁后,再次检查 int c = ctl.get(); int rs = runStateOf(c); //如果线程池在运行running<shutdown 或者 线程池已经shutdown,且firstTask==null(可能是workQueue中仍有未执行完成的任务,创建没有初始任务的worker线程执行) //worker数量-1的操作在addWorkerFailed() if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) { if (t.isAlive()) // precheck that t is startable 线程已经启动,抛非法线程状态异常 throw new IllegalThreadStateException(); workers.add(w);//workers是一个HashSet<Worker> //设置最大的池大小largestPoolSize,workerAdded设置为true int s = workers.size(); if (s > largestPoolSize) largestPoolSize = s; workerAdded = true; } //-------------------------------------------- } finally { mainLock.unlock(); } //如果往HashSet中添加worker成功,启动线程 if (workerAdded) { t.start(); workerStarted = true; } } } finally { //如果启动线程失败 if (! workerStarted) addWorkerFailed(w); } return workerStarted;}
addWorker(Runnable firstTask, boolean core)
参数:
firstTask: worker线程的初始任务,可以为空
core: true:将corePoolSize作为上限,false:将maximumPoolSize作为上限
addWorker方法有4种传参的方式:
1、addWorker(command, true)
2、addWorker(command, false)
3、addWorker(null, false)
4、addWorker(null, true)
在execute方法中就使用了前3种,结合这个核心方法进行以下分析
第一个:线程数小于corePoolSize时,放一个需要处理的task进Workers Set。如果Workers Set长度超过corePoolSize,就返回false
第二个:当队列被放满时,就尝试将这个新来的task直接放入Workers Set,而此时Workers Set的长度限制是maximumPoolSize。如果线程池也满了的话就返回false
第三个:放入一个空的task进workers Set,长度限制是maximumPoolSize。这样一个task为空的worker在线程执行的时候会去任务队列里拿任务,这样就相当于创建了一个新的线程,只是没有马上分配任务
第四个:这个方法就是放一个null的task进Workers Set,而且是在小于corePoolSize时,如果此时Set中的数量已经达到corePoolSize那就返回false,什么也不干。实际使用中是在prestartAllCoreThreads()方法,这个方法用来为线程池预先启动corePoolSize个worker等待从workQueue中获取任务执行
执行流程:
1、判断线程池当前是否为可以添加worker线程的状态,可以则继续下一步,不可以return false:
A、线程池状态>shutdown,可能为stop、tidying、terminated,不能添加worker线程
B、线程池状态==shutdown,firstTask不为空,不能添加worker线程,因为shutdown状态的线程池不接收新任务
C、线程池状态==shutdown,firstTask==null,workQueue为空,不能添加worker线程,因为firstTask为空是为了添加一个没有任务的线程再从workQueue获取task,而workQueue为空,说明添加无任务线程已经没有意义
2、线程池当前线程数量是否超过上限(corePoolSize 或 maximumPoolSize),超过了return false,没超过则对workerCount+1,继续下一步
3、在线程池的ReentrantLock保证下,向Workers Set中添加新创建的worker实例,添加完成后解锁,并启动worker线程,如果这一切都成功了,return true,如果添加worker入Set失败或启动失败,调用addWorkerFailed()逻辑
3、内部类Worker
/** * Class Worker mainly maintains interrupt control state for * threads running tasks, along with other minor bookkeeping. * This class opportunistically extends AbstractQueuedSynchronizer * to simplify acquiring and releasing a lock surrounding each * task execution. This protects against interrupts that are * intended to wake up a worker thread waiting for a task from * instead interrupting a task being run. We implement a simple * non-reentrant mutual exclusion lock rather than use * ReentrantLock because we do not want worker tasks to be able to * reacquire the lock when they invoke pool control methods like * setCorePoolSize. Additionally, to suppress interrupts until * the thread actually starts running tasks, we initialize lock * state to a negative value, and clear it upon start (in * runWorker). * * Worker类大体上管理着运行线程的中断状态 和 一些指标 * Worker类投机取巧的继承了AbstractQueuedSynchronizer来简化在执行任务时的获取、释放锁 * 这样防止了中断在运行中的任务,只会唤醒(中断)在等待从workQueue中获取任务的线程 * 解释: * 为什么不直接执行execute(command)提交的command,而要在外面包一层Worker呢?? * 主要是为了控制中断 * 用什么控制?? * 用AQS锁,当运行时上锁,就不能中断,TreadPoolExecutor的shutdown()方法中断前都要获取worker锁 * 只有在等待从workQueue中获取任务getTask()时才能中断 * worker实现了一个简单的不可重入的互斥锁,而不是用ReentrantLock可重入锁 * 因为我们不想让在调用比如setCorePoolSize()这种线程池控制方法时可以再次获取锁(重入) * 解释: * setCorePoolSize()时可能会interruptIdleWorkers(),在对一个线程interrupt时会要w.tryLock() * 如果可重入,就可能会在对线程池操作的方法中中断线程,类似方法还有: * setMaximumPoolSize() * setKeppAliveTime() * allowCoreThreadTimeOut() * shutdown() * 此外,为了让线程真正开始后才可以中断,初始化lock状态为负值(-1),在开始runWorker()时将state置为0,而state>=0才可以中断 * * * Worker继承了AQS,实现了Runnable,说明其既是一个可运行的任务,也是一把锁(不可重入) */private final class Worker extends AbstractQueuedSynchronizer implements Runnable{ /** * This class will never be serialized, but we provide a * serialVersionUID to suppress a javac warning. */ private static final long serialVersionUID = 6138294804551838833L; /** Thread this worker is running in. Null if factory fails. */ final Thread thread; //利用ThreadFactory和 Worker这个Runnable创建的线程对象 /** Initial task to run. Possibly null. */ Runnable firstTask; /** Per-thread task counter */ volatile long completedTasks; /** * Creates with given first task and thread from ThreadFactory. * @param firstTask the first task (null if none) */ Worker(Runnable firstTask) { //设置AQS的同步状态private volatile int state,是一个计数器,大于0代表锁已经被获取 setState(-1); // inhibit interrupts until runWorker // 在调用runWorker()前,禁止interrupt中断,在interruptIfStarted()方法中会判断 getState()>=0 this.firstTask = firstTask; this.thread = getThreadFactory().newThread(this); //根据当前worker创建一个线程对象 //当前worker本身就是一个runnable任务,也就是不会用参数的firstTask创建线程,而是调用当前worker.run()时调用firstTask.run() } /** Delegates main run loop to outer runWorker */ public void run() { runWorker(this); //runWorker()是ThreadPoolExecutor的方法 } // Lock methods // // The value 0 represents the unlocked state. 0代表“没被锁定”状态 // The value 1 represents the locked state. 1代表“锁定”状态 protected boolean isHeldExclusively() { return getState() != 0; } /** * 尝试获取锁 * 重写AQS的tryAcquire(),AQS本来就是让子类来实现的 */ protected boolean tryAcquire(int unused) { //尝试一次将state从0设置为1,即“锁定”状态,但由于每次都是state 0->1,而不是+1,那么说明不可重入 //且state==-1时也不会获取到锁 if (compareAndSetState(0, 1)) { setExclusiveOwnerThread(Thread.currentThread()); //设置exclusiveOwnerThread=当前线程 return true; } return false; } /** * 尝试释放锁 * 不是state-1,而是置为0 */ protected boolean tryRelease(int unused) { setExclusiveOwnerThread(null); setState(0); return true; } public void lock() { acquire(1); } public boolean tryLock() { return tryAcquire(1); } public void unlock() { release(1); } public boolean isLocked() { return isHeldExclusively(); } /** * 中断(如果运行) * shutdownNow时会循环对worker线程执行 * 且不需要获取worker锁,即使在worker运行时也可以中断 */ void interruptIfStarted() { Thread t; //如果state>=0、t!=null、且t没有被中断 //new Worker()时state==-1,说明不能中断 if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) { try { t.interrupt(); } catch (SecurityException ignore) { } } }}
Worker类
Worker类本身既实现了Runnable,又继承了AbstractQueuedSynchronizer(以下简称AQS),所以其既是一个可执行的任务,又可以达到锁的效果
new Worker()
1、将AQS的state置为-1,在runWoker()前不允许中断
2、待执行的任务会以参数传入,并赋予firstTask
3、用Worker这个Runnable创建Thread
之所以Worker自己实现Runnable,并创建Thread,在firstTask外包一层,是因为要通过Worker控制中断,而firstTask这个工作任务只是负责执行业务
Worker控制中断主要有以下几方面:
1、初始AQS状态为-1,此时不允许中断interrupt(),只有在worker线程启动了,执行了runWoker(),将state置为0,才能中断
不允许中断体现在:
A、shutdown()线程池时,会对每个worker tryLock()上锁,而Worker类这个AQS的tryAcquire()方法是固定将state从0->1,故初始状态state==-1时tryLock()失败,没发interrupt()
B、shutdownNow()线程池时,不用tryLock()上锁,但调用worker.interruptIfStarted()终止worker,interruptIfStarted()也有state>0才能interrupt的逻辑
2、为了防止某种情况下,在运行中的worker被中断,runWorker()每次运行任务时都会lock()上锁,而shutdown()这类可能会终止worker的操作需要先获取worker的锁,这样就防止了中断正在运行的线程
Worker实现的AQS为不可重入锁,为了是在获得worker锁的情况下再进入其它一些需要加锁的方法
Worker和Task的区别:
Worker是线程池中的线程,而Task虽然是runnable,但是并没有真正执行,只是被Worker调用了run方法,后面会看到这部分的实现。
4、runWorker() -- 执行任务
/** * Main worker run loop. Repeatedly gets tasks from queue and * executes them, while coping with a number of issues: * 重复的从队列中获取任务并执行,同时应对一些问题: * * 1. We may start out with an initial task, in which case we * don‘t need to get the first one. Otherwise, as long as pool is * running, we get tasks from getTask. If it returns null then the * worker exits due to changed pool state or configuration * parameters. Other exits result from exception throws in * external code, in which case completedAbruptly holds, which * usually leads processWorkerExit to replace this thread. * 我们可能使用一个初始化任务开始,即firstTask为null * 然后只要线程池在运行,我们就从getTask()获取任务 * 如果getTask()返回null,则worker由于改变了线程池状态或参数配置而退出 * 其它退出因为外部代码抛异常了,这会使得completedAbruptly为true,这会导致在processWorkerExit()方法中替换当前线程 * * 2. Before running any task, the lock is acquired to prevent * other pool interrupts while the task is executing, and * clearInterruptsForTaskRun called to ensure that unless pool is * stopping, this thread does not have its interrupt set. * 在任何任务执行之前,都需要对worker加锁去防止在任务运行时,其它的线程池中断操作 * clearInterruptsForTaskRun保证除非线程池正在stoping,线程不会被设置中断标示 * * 3. Each task run is preceded by a call to beforeExecute, which * might throw an exception, in which case we cause thread to die * (breaking loop with completedAbruptly true) without processing * the task. * 每个任务执行前会调用beforeExecute(),其中可能抛出一个异常,这种情况下会导致线程die(跳出循环,且completedAbruptly==true),没有执行任务 * 因为beforeExecute()的异常没有cache住,会上抛,跳出循环 * * 4. Assuming beforeExecute completes normally, we run the task, * gathering any of its thrown exceptions to send to * afterExecute. We separately handle RuntimeException, Error * (both of which the specs guarantee that we trap) and arbitrary * Throwables. Because we cannot rethrow Throwables within * Runnable.run, we wrap them within Errors on the way out (to the * thread‘s UncaughtExceptionHandler). Any thrown exception also * conservatively causes thread to die. * 假定beforeExecute()正常完成,我们执行任务 * 汇总任何抛出的异常并发送给afterExecute(task, thrown) * 因为我们不能在Runnable.run()方法中重新上抛Throwables,我们将Throwables包装到Errors上抛(会到线程的UncaughtExceptionHandler去处理) * 任何上抛的异常都会导致线程die * * 5. After task.run completes, we call afterExecute, which may * also throw an exception, which will also cause thread to * die. According to JLS Sec 14.20, this exception is the one that * will be in effect even if task.run throws. * 任务执行结束后,调用afterExecute(),也可能抛异常,也会导致线程die * 根据JLS Sec 14.20,这个异常(finally中的异常)会生效 * * The net effect of the exception mechanics is that afterExecute * and the thread‘s UncaughtExceptionHandler have as accurate * information as we can provide about any problems encountered by * user code. * * @param w the worker */final void runWorker(Worker w) { Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; w.unlock(); // allow interrupts // new Worker()是state==-1,此处是调用Worker类的tryRelease()方法,将state置为0, 而interruptIfStarted()中只有state>=0才允许调用中断 boolean completedAbruptly = true; //是否“突然完成”,如果是由于异常导致的进入finally,那么completedAbruptly==true就是突然完成的 try { /** * 如果task不为null,或者从阻塞队列中getTask()不为null */ while (task != null || (task = getTask()) != null) { w.lock(); //上锁,不是为了防止并发执行任务,为了在shutdown()时不终止正在运行的worker // If pool is stopping, ensure thread is interrupted; // if not, ensure thread is not interrupted. This // requires a recheck in second case to deal with // shutdownNow race while clearing interrupt /** * clearInterruptsForTaskRun操作 * 确保只有在线程stoping时,才会被设置中断标示,否则清除中断标示 * 1、如果线程池状态>=stop,且当前线程没有设置中断状态,wt.interrupt() * 2、如果一开始判断线程池状态<stop,但Thread.interrupted()为true,即线程已经被中断,又清除了中断标示,再次判断线程池状态是否>=stop * 是,再次设置中断标示,wt.interrupt() * 否,不做操作,清除中断标示后进行后续步骤 */ if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) wt.interrupt(); //当前线程调用interrupt()中断 try { //执行前(子类实现) beforeExecute(wt, task); Throwable thrown = null; try { task.run(); } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { //执行后(子类实现) afterExecute(task, thrown); //这里就考验catch和finally的执行顺序了,因为要以thrown为参数 } } finally { task = null; //task置为null w.completedTasks++; //完成任务数+1 w.unlock(); //解锁 } } completedAbruptly = false; } finally { //处理worker的退出 processWorkerExit(w, completedAbruptly); }}
runWorker(Worker w)
执行流程:
1、Worker线程启动后,通过Worker类的run()方法调用runWorker(this)
2、执行任务之前,首先worker.unlock(),将AQS的state置为0,允许中断当前worker线程
3、开始执行firstTask,调用task.run(),在执行任务前会上锁wroker.lock(),在执行完任务后会解锁,为了防止在任务运行时被线程池一些中断操作中断
4、在任务执行前后,可以根据业务场景自定义beforeExecute() 和 afterExecute()方法
5、无论在beforeExecute()、task.run()、afterExecute()发生异常上抛,都会导致worker线程终止,进入processWorkerExit()处理worker退出的流程
6、如正常执行完当前task后,会通过getTask()从阻塞队列中获取新任务,当队列中没有任务,且获取任务超时,那么当前worker也会进入退出流程
5、getTask() -- 获取任务
/** * Performs blocking or timed wait for a task, depending on * current configuration settings, or returns null if this worker * must exit because of any of: 以下情况会返回null * 1. There are more than maximumPoolSize workers (due to * a call to setMaximumPoolSize). * 超过了maximumPoolSize设置的线程数量(因为调用了setMaximumPoolSize()) * 2. The pool is stopped. * 线程池被stop * 3. The pool is shutdown and the queue is empty. * 线程池被shutdown,并且workQueue空了 * 4. This worker timed out waiting for a task, and timed-out * workers are subject to termination (that is, * {@code allowCoreThreadTimeOut || workerCount > corePoolSize}) * both before and after the timed wait. * 线程等待任务超时 * * @return task, or null if the worker must exit, in which case * workerCount is decremented * 返回null表示这个worker要结束了,这种情况下workerCount-1 */private Runnable getTask() { boolean timedOut = false; // Did the last poll() time out? /** * 外层循环 * 用于判断线程池状态 */ retry: for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. /** * 对线程池状态的判断,两种情况会workerCount-1,并且返回null * 线程池状态为shutdown,且workQueue为空(反映了shutdown状态的线程池还是要执行workQueue中剩余的任务的) * 线程池状态为stop(shutdownNow()会导致变成STOP)(此时不用考虑workQueue的情况) */ if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { decrementWorkerCount(); //循环的CAS减少worker数量,直到成功 return null; } boolean timed; // Are workers subject to culling? // 是否需要定时从workQueue中获取 /** * 内层循环 * 要么break去workQueue获取任务 * 要么超时了,worker count-1 */ for (;;) { int wc = workerCountOf(c); timed = allowCoreThreadTimeOut || wc > corePoolSize; //allowCoreThreadTimeOut默认为false //如果allowCoreThreadTimeOut为true,说明corePoolSize和maximum都需要定时 //如果当前执行线程数<maximumPoolSize,并且timedOut 和 timed 任一为false,跳出循环,开始从workQueue获取任务 if (wc <= maximumPoolSize && ! (timedOut && timed)) break; /** * 如果到了这一步,说明要么线程数量超过了maximumPoolSize(可能maximumPoolSize被修改了) * 要么既需要计时timed==true,也超时了timedOut==true * worker数量-1,减一执行一次就行了,然后返回null,在runWorker()中会有逻辑减少worker线程 * 如果本次减一失败,继续内层循环再次尝试减一 */ if (compareAndDecrementWorkerCount(c)) return null; //如果减数量失败,再次读取ctl c = ctl.get(); // Re-read ctl //如果线程池运行状态发生变化,继续外层循环 //如果状态没变,继续内层循环 if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop } try { //poll() - 使用 LockSupport.parkNanos(this, nanosTimeout) 挂起一段时间,interrupt()时不会抛异常,但会有中断响应 //take() - 使用 LockSupport.park(this) 挂起,interrupt()时不会抛异常,但会有中断响应 Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : //大于corePoolSize workQueue.take(); //小于等于corePoolSize //如获取到了任务就返回 if (r != null) return r; //没有返回,说明超时,那么在下一次内层循环时会进入worker count减一的步骤 timedOut = true; } /** * blockingQueue的take()阻塞使用LockSupport.park(this)进入wait状态的,对LockSupport.park(this)进行interrupt不会抛异常,但还是会有中断响应 * 但AQS的ConditionObject的await()对中断状态做了判断,会报告中断状态 reportInterruptAfterWait(interruptMode) * 就会上抛InterruptedException,在此处捕获,重新开始循环 * 如果是由于shutdown()等操作导致的空闲worker中断响应,在外层循环判断状态时,可能return null */ catch (InterruptedException retry) { timedOut = false; //响应中断,重新开始,中断状态会被清除 } }}
getTask()
执行流程:
1、首先判断是否可以满足从workQueue中获取任务的条件,不满足return null
A、线程池状态是否满足:
(a)shutdown状态 + workQueue为空 或 stop状态,都不满足,因为被shutdown后还是要执行workQueue剩余的任务,但workQueue也为空,就可以退出了
(b)stop状态,shutdownNow()操作会使线程池进入stop,此时不接受新任务,中断正在执行的任务,workQueue中的任务也不执行了,故return null返回
B、线程数量是否超过maximumPoolSize 或 获取任务是否超时
(a)线程数量超过maximumPoolSize可能是线程池在运行时被调用了setMaximumPoolSize()被改变了大小,否则已经addWorker()成功不会超过maximumPoolSize
(b)如果 当前线程数量>corePoolSize,才会检查是否获取任务超时,这也体现了当线程数量达到maximumPoolSize后,如果一直没有新任务,会逐渐终止worker线程直到corePoolSize
2、如果满足获取任务条件,根据是否需要定时获取调用不同方法:
A、workQueue.poll():如果在keepAliveTime时间内,阻塞队列还是没有任务,返回null
B、workQueue.take():如果阻塞队列为空,当前线程会被挂起等待;当队列中有任务加入时,线程被唤醒,take方法返回任务
3、在阻塞从workQueue中获取任务时,可以被interrupt()中断,代码中捕获了InterruptedException,重置timedOut为初始值false,再次执行第1步中的判断,满足就继续获取任务,不满足return null,会进入worker退出的流程
6、processWorkerExit() -- worker线程退出
/** * Performs cleanup and bookkeeping for a dying worker. Called * only from worker threads. Unless completedAbruptly is set, * assumes that workerCount has already been adjusted to account * for exit. This method removes thread from worker set, and * possibly terminates the pool or replaces the worker if either * it exited due to user task exception or if fewer than * corePoolSize workers are running or queue is non-empty but * there are no workers. * * @param w the worker * @param completedAbruptly if the worker died due to user exception */private void processWorkerExit(Worker w, boolean completedAbruptly) { /** * 1、worker数量-1 * 如果是突然终止,说明是task执行时异常情况导致,即run()方法执行时发生了异常,那么正在工作的worker线程数量需要-1 * 如果不是突然终止,说明是worker线程没有task可执行了,不用-1,因为已经在getTask()方法中-1了 */ if (completedAbruptly) // If abrupt, then workerCount wasn‘t adjusted 代码和注释正好相反啊 decrementWorkerCount(); /** * 2、从Workers Set中移除worker */ final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { completedTaskCount += w.completedTasks; //把worker的完成任务数加到线程池的完成任务数 workers.remove(w); //从HashSet<Worker>中移除 } finally { mainLock.unlock(); } /** * 3、在对线程池有负效益的操作时,都需要“尝试终止”线程池 * 主要是判断线程池是否满足终止的状态 * 如果状态满足,但还有线程池还有线程,尝试对其发出中断响应,使其能进入退出流程 * 没有线程了,更新状态为tidying->terminated */ tryTerminate(); /** * 4、是否需要增加worker线程 * 线程池状态是running 或 shutdown * 如果当前线程是突然终止的,addWorker() * 如果当前线程不是突然终止的,但当前线程数量 < 要维护的线程数量,addWorker() * 故如果调用线程池shutdown(),直到workQueue为空前,线程池都会维持corePoolSize个线程,然后再逐渐销毁这corePoolSize个线程 */ int c = ctl.get(); //如果状态是running、shutdown,即tryTerminate()没有成功终止线程池,尝试再添加一个worker if (runStateLessThan(c, STOP)) { //不是突然完成的,即没有task任务可以获取而完成的,计算min,并根据当前worker数量判断是否需要addWorker() if (!completedAbruptly) { int min = allowCoreThreadTimeOut ? 0 : corePoolSize; //allowCoreThreadTimeOut默认为false,即min默认为corePoolSize //如果min为0,即不需要维持核心线程数量,且workQueue不为空,至少保持一个线程 if (min == 0 && ! workQueue.isEmpty()) min = 1; //如果线程数量大于最少数量,直接返回,否则下面至少要addWorker一个 if (workerCountOf(c) >= min) return; // replacement not needed } //添加一个没有firstTask的worker //只要worker是completedAbruptly突然终止的,或者线程数量小于要维护的数量,就新添一个worker线程,即使是shutdown状态 addWorker(null, false); }}
processWorkerExit(Worker w, boolean completedAbruptly)
参数:
worker: 要结束的worker
completedAbruptly: 是否突然完成(是否因为异常退出)
执行流程:
1、worker数量-1
A、如果是突然终止,说明是task执行时异常情况导致,即run()方法执行时发生了异常,那么正在工作的worker线程数量需要-1
B、如果不是突然终止,说明是worker线程没有task可执行了,不用-1,因为已经在getTask()方法中-1了
2、从Workers Set中移除worker,删除时需要上锁mainlock
3、tryTerminate():在对线程池有负效益的操作时,都需要“尝试终止”线程池,大概逻辑:
判断线程池是否满足终止的状态
A、如果状态满足,但还有线程池还有线程,尝试对其发出中断响应,使其能进入退出流程
B、没有线程了,更新状态为tidying->terminated
4、是否需要增加worker线程,如果线程池还没有完全终止,仍需要保持一定数量的线程
线程池状态是running 或 shutdown
A、如果当前线程是突然终止的,addWorker()
B、如果当前线程不是突然终止的,但当前线程数量 < 要维护的线程数量,addWorker()
故如果调用线程池shutdown(),直到workQueue为空前,线程池都会维持corePoolSize个线程,然后再逐渐销毁这corePoolSize个线程
参考资料:
深入分析java线程池的实现原理 - 占小狼
JUC源码分析-线程池-ThreadPoolExecutor
Java线程池使用和分析(二) - execute()原理