首页 > 代码库 > hdu1003
hdu1003
Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 138410 Accepted Submission(s): 32144
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
25 6 -1 5 4 -77 0 6 -1 1 -6 7 -5
Sample Output
Case 1:14 1 4Case 2:7 1 6
Author
Ignatius.L
这题是一个经典dp问题,dp思想在于把问题分解成若干个子问题,在子问题最优的情况下得出最终最优结果,所以我们每一步都是建立在前一步是最优的基础之上的。所以解决dp问题,最基本的要在某种情景下,想到当前状态的最优情况是什么样的,最优后,接下来怎么办,不是最优的该怎么变成最优的。这就是我们的状态转移方程。
对于本问题,首先明确,连续的子段! 和最大 ,一个数组给我们,第一个数肯定当前最大,毋庸置疑,那么遇到下一个数,怎么判断和是当前最大呢?我们遇到正数,那肯定直接加,因为加完肯定比不加大,如果是负数呢?加上去,原来的和肯定变小,但不加怎么办呢?
基于以上问题 可以得出状态方程 dp[i]=d[i-1]+a[i]>a[i]?dp[i-1]+a[i]:a[i] (dp[i]表示当前i下最大的子段和,a[i]是需要处理的数字)什么意思呢,当前数字加到之前的和上面后,如果大于当前数字,那么就执行加的操作,如果小于当前数字,就把当前和最大值dp[i]设置为a[i],可能有人问为什么要设置为a[i]。。记住,如果a[i]你不加上去,意味着你需要从新开始累加和了,我们要求是连续的子段和!!!
利用dp数组的代码:
1 #include<iostream> 2 #include<cstdio> 3 #include<cstdlib> 4 //#define LOCAL 5 using namespace std; 6 7 8 int main() 9 {10 #ifdef LOCAL11 freopen("d:datain.txt","r",stdin);12 freopen("d:dataout.txt","w",stdout);13 #endif 14 int n;15 while(scanf("%d",&n)!=EOF)16 {17 int i,m;18 for(i =0 ; i< n;i++)19 {20 scanf("%d",&m);21 int dp[100000],a[100000];22 scanf("%d",&a[0]);23 dp[0] = a[0]; //当前最大24 for(int j = 1; j<m;j++) //生成了dp状态数组了25 {26 scanf("%d",&a[j]);27 if(dp[j-1]+a[j]<a[j]) //状态转移方程28 dp[j]=a[j];29 else30 dp[j]=dp[j-1]+a[j];31 }32 int Max,End;33 Max = dp[0];34 End = 0;35 for(int j = 1 ;j<m;j++) //寻找区间36 if(Max<dp[j])37 {38 End = j;39 Max = dp[j];40 }41 int Begin = End;42 int temp = 0;43 for(int j = End;j>=0;j--)44 {45 temp +=a[j];46 if(temp==dp[End])47 Begin = j;48 }49 cout<<"Case "<<i+1<<":"<<endl<<Max<<" "<<Begin+1<<" "<<End+1<<endl;50 if(i<n-1)51 cout<<endl;52 }53 }54 return 0;55 }
简化后不带dp数组的,因为这题在dp问题中是比较简单的。
1 //hdu 1003 2 3 #include<stdio.h> 4 int main() 5 { 6 7 int n; 8 while(scanf("%d",&n)!=EOF) 9 {10 for(int i = 0;i<n;i++)11 {12 int a;13 int Max = -9999;14 int sum = 0,m;15 int Begin=0,End=0,flag=0;16 scanf("%d",&m);17 scanf("%d",&a);18 Max = sum = a;19 for(int j = 1 ;j<m ;j++)20 {21 scanf("%d",&a);22 if(sum<0)23 {24 sum=a;25 flag=j;26 }27 else28 {29 30 sum=sum+a;31 }32 if(Max<sum)33 {34 Max = sum ;35 Begin =flag;36 End = j;37 }38 }39 printf("Case %d:\n%d %d %d\n",i+1,Max,Begin+1,End+1);40 if(i<n-1)41 printf("\n");42 }43 44 }45 return 0;46 }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。