首页 > 代码库 > HDU1003 Max Sum(求最大字段和)
HDU1003 Max Sum(求最大字段和)
其实这连续发表的三篇是一模一样的思路,我就厚颜无耻的再发一篇吧!
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
代码如下:
#include <cstdio> #define INF 0x3fffffff #define M 100000+17 int a[M]; int main() { int n, i, T, k = 0; while(~scanf("%d",&T)) { while(T--) { scanf("%d",&n); int s = 1, e = 1, t = 1; int sum = 0, MAX = -INF; for(i = 1; i <= n; i++) { scanf("%d",&a[i]); sum+=a[i]; if(sum > MAX) { s = t; e = i; MAX = sum; } if(sum < 0) { t = i+1; sum = 0; } } printf("Case %d:\n",++k); printf("%d %d %d\n",MAX,s,e); if(T!=0) printf("\n"); } } return 0; }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。