首页 > 代码库 > Codeforces 437E The Child and Polygon(区间DP)
Codeforces 437E The Child and Polygon(区间DP)
题目链接:Codeforces 437E The Child and Polygon
题目大意:给出一个多边形,问说有多少种分割方法,将多边形分割为多个三角形。
解题思路:首先要理解向量叉积的性质,一开始将给出的点转换成顺时针,然后用区间dp计算。dp[i][j]表示从点i到点j可以有dp[i][j]种切割方法。然后点i和点j是否可以做为切割线,要经过判断,即在i和j中选择的话点k的话,点k要在i,j的逆时针方。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N = 205;
const ll MOD = 1e9+7;
struct point {
ll x, y;
ll operator * (const point& c) const {
return x * c.y - y * c.x;
}
point operator - (const point& c) const {
point u;
u.x = x - c.x;
u.y = y - c.y;
return u;
}
}p[N];
int n;
ll dp[N][N];
void init () {
scanf("%d", &n);
memset(dp, -1, sizeof(dp));
for (int i = 0; i < n; i++)
scanf("%lld %lld", &p[i].x, &p[i].y);
ll tmp = 0;
p[n] = p[0];
for (int i = 0; i < n; i++)
tmp += p[i] * p[i+1];
if (tmp < 0)
reverse(p, p + n);
}
ll solve (int l, int r) {
if (dp[l][r] != -1)
return dp[l][r];
ll& ans = dp[l][r];
ans = 0;
if (r - l == 1)
return ans = 1;
for (int i = l + 1; i < r; i++) {
if ((p[l] - p[r]) * (p[i] - p[r]) > 0)
ans = (ans + solve(l, i) * solve(i, r)) % MOD;
}
return ans;
}
int main () {
init();
printf("%lld\n", solve(0, n-1));
return 0;
}
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。