首页 > 代码库 > P2680 运输计划

P2680 运输计划

http://www.luogu.org/problem/show?pid=2680#sub

题目背景

公元 2044 年,人类进入了宇宙纪元。

题目描述

L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之间,这 n-1 条航道连通了 L 国的所有星球。

小 P 掌管一家物流公司,该公司有很多个运输计划,每个运输计划形如:有一艘物

流飞船需要从 ui 号星球沿最快的宇航路径飞行到 vi 号星球去。显然,飞船驶过一条航道 是需要时间的,对于航道 j,任意飞船驶过它所花费的时间为 tj,并且任意两艘飞船之 间不会产生任何干扰。

为了鼓励科技创新,L 国国王同意小 P 的物流公司参与 L 国的航道建设,即允许小 P 把某一条航道改造成虫洞,飞船驶过虫洞不消耗时间。

在虫洞的建设完成前小 P 的物流公司就预接了 m 个运输计划。在虫洞建设完成后, 这 m 个运输计划会同时开始,所有飞船一起出发。当这 m 个运输计划都完成时,小 P 的 物流公司的阶段性工作就完成了。

如果小 P 可以自由选择将哪一条航道改造成虫洞,试求出小 P 的物流公司完成阶段 性工作所需要的最短时间是多少?

输入输出格式

输入格式:

 

输入文件名为 transport.in。

第一行包括两个正整数 n、m,表示 L 国中星球的数量及小 P 公司预接的运输计划的数量,星球从 1 到 n 编号。

接下来 n-1 行描述航道的建设情况,其中第 i 行包含三个整数 ai, bi 和 ti,表示第

i 条双向航道修建在 ai 与 bi 两个星球之间,任意飞船驶过它所花费的时间为 ti。

接下来 m 行描述运输计划的情况,其中第 j 行包含两个正整数 uj 和 vj,表示第 j个 运输计划是从 uj 号星球飞往 vj 号星球。

 

输出格式:

 

输出文件名为 transport.out。

共 1 行,包含 1 个整数,表示小 P 的物流公司完成阶段性工作所需要的最短时间。

 

输入输出样例

输入样例#1:
6 3 1 2 3 1 6 4 3 1 7 4 3 6 3 5 5 3 6 2 5 4 5
输出样例#1:
11

说明

所有测试数据的范围和特点如下表所示

技术分享

请注意常数因子带来的程序效率上的影响。

【题目分析】

    二分答案,如果一条航道的长度大于当前二分的答案,那么很明显这条航道上需要有一条边权值变为0,且条边权值应该>=(航道长度-二分的答案),那么若想使得所以不满足条件的航道都满足条件,这个虫洞就应该设置在这些航道的交集上,且权值应>=(max(航道长度)-二分的答案),航道的交集具体实现可以把这条航道上路径次数都加1,假设不满足条件的航道有m条,那么一条边如果次数==m条,就表示其是m条航道的交集了,实现的话一个dfs,复杂度O(nlogn)

//T—T 95#include<cstdio>#include<cstring>#include<iostream>#include<vector>#include<set>using namespace std;#define maxn 600100int dp,pre[maxn],p[maxn],tt[maxn],ww[maxn],fa[maxn],deep[maxn],v[maxn],a[maxn],b[maxn],lca[maxn];int s[maxn][20],n,m,sum[maxn],ans,cnt,dis[maxn],dist[maxn];void gao(int x){    int i=p[x];    while(i)    {        if(tt[i]!=fa[x])          gao(tt[i]),          sum[x]+=sum[tt[i]];        i=pre[i];    }    }int check(int x){    int cnt=0,dec=0;    for(int i=1;i<=n;i++)      sum[i]=0;    for(int i=1;i<=m;i++)        if(dist[i]>x)        {            cnt++;            dec=max(dec,dist[i]-x);            sum[a[i]]++;            sum[b[i]]++;            sum[lca[i]]-=2;        }    gao(1);    for(int i=1;i<=n;i++)      if(sum[i]==cnt&&v[i]>=dec)        return 1;    return 0;}int getlca(int x,int y){    if(deep[x]>deep[y])      x^=y^=x^=y;    for(int i=19;i>=0;i--)      if(deep[y]-deep[x]>=1<<i)        y=s[y][i];    if(x==y) return x;    for(int i=19;i>=0;i--)      if(s[x][i]!=s[y][i])        x=s[x][i],y=s[y][i];    return fa[x];}void dfs(int x){    int i;    i=p[x];    while(i)    {        if(tt[i]!=fa[x])        {            deep[tt[i]]=deep[x]+ 1;            fa[tt[i]]=x;            v[tt[i]]=ww[i];            dis[tt[i]]=dis[x]+ww[i];            dfs(tt[i]);        }        i=pre[i];    }}void add(int x,int y,int z){    dp++;    pre[dp]=p[x];    p[x]=dp;    tt[dp]=y;    ww[dp]=z;}int main(){    scanf("%d%d",&n,&m);    for(int i=1;i<n;i++)    {        int a,b,c;        scanf("%d%d%d",&a,&b,&c);        add(a,b,c);        add(b,a,c);    }    dfs(1);    for(int i=1;i<=n;i++)      s[i][0]=fa[i];    for(int i=1;i<20;i++)      for(int j=1;j<=n;j++)        s[j][i]=s[s[j][i-1]][i-1];    for(int i=1;i<=m;i++)    {        scanf("%d%d",&a[i],&b[i]);        lca[i]=getlca(a[i],b[i]);        dist[i]=dis[a[i]]+dis[b[i]]-2*dis[lca[i]];    }    int l=0,r=0;    for(int i=1;i<=m;i++)      r=max(r,dist[i]);    int mid;    while(l<=r)    {        mid=(l+r)>>1;        if(check(mid)) r=mid-1;        else l=mid+1;    }    printf("%d\n",l);    return 0;}

 

P2680 运输计划